初二全等三角形所有知识点总结和常考题提高难题压轴题练习含答案解析.docx
《初二全等三角形所有知识点总结和常考题提高难题压轴题练习含答案解析.docx》由会员分享,可在线阅读,更多相关《初二全等三角形所有知识点总结和常考题提高难题压轴题练习含答案解析.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二全等三角形所有知识点总结与常考题知识点:1.基本定义:全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点:全等三角形中互相重合的顶点叫做对应顶点.对应边:全等三角形中互相重合的边叫做对应边.对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:边边边():三边对应相等的两个三角形全等.边角边():两边与它们的夹角对应相等的两个三角形全等.角边角():两角与它
2、们的夹边对应相等的两个三角形全等.角角边():两角与其中一个角的对边对应相等的两个三角形全等.斜边、直角边():斜边与一条直角边对应相等的两个直角三角形全等.4.角平分线:画法:性质定理:角平分线上的点到角的两边的距离相等.性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:明确命题中的已知与求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)根据题意,画出图形,并用数字符号表示已知与求证.经过分析,找出由已知推出求证的途径,写出证明过程.常考题:一选择题(共14小题)1使两个直角三角形全等的条件是()A一个锐角对应
3、相等B两个锐角对应相等C一条边对应相等D两条边对应相等2如图,已知,那么添加下列一个条件后,仍无法判定的是()ACBCD3如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()ABCD4到三角形三条边的距离都相等的点是这个三角形的()A三条中线的交点B三条高的交点C三条边的垂直平分线的交点D三条角平分线的交点5如图,A,=30,则的度数为()A20B30C35D406如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处7如图
4、,是中的角平分线,于点E,S7,2,4,则长是()A3B4C6D58如图,在与中,已知,还需添加两个条件才能使,不能添加的一组条件是()A,EB,C,DDE,D9如图,已知在中,是边上的高线,平分,交于点E,5,2,则的面积等于()A10B7C5D410要测量河两岸相对的两点A,B的距离,先在的垂线上取两点C,D,使,再定出的垂线,使A,C,E在一条直线上(如图所示),可以说明,得,因此测得的长就是的长,判定最恰当的理由是()A边角边B角边角C边边边D边边角11如图,的三边,长分别是20,30,40,其三条角平分线将分为三个三角形,则S:S:S等于()A1:1:1B1:2:3C2:3:4D3:
5、4:512尺规作图作的平分线方法如下:以O为圆心,任意长为半径画弧交,于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧交于点P,作射线由作法得的根据是()ABCD13下列判断正确的是()A有两边与其中一边的对角对应相等的两个三角形全等B有两边对应相等,且有一角为30的两个等腰三角形全等C有一角与一边对应相等的两个直角三角形全等D有两角与一边对应相等的两个三角形全等14如图,已知1=2,增加下列条件:;D;E其中能使的条件有()A4个B3个C2个D1个二填空题(共11小题)15如图,在中,90,平分,8,5,那么点D到线段的距离是16如图,中,90,平分,5,2,则的面积是17如图为6
6、个边长等的正方形的组合图形,则1+2+3=18如图,请根据图中提供的信息,写出19如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店20如图,已知,E为的中点,若9,5,则21在数学活动课上,小明提出这样一个问题:90,E是的中点,平分,35,如图,则是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度22如图,100,30,那么度23如图所示,将两根钢条,的中点O连在一起,使A A,可以绕着点O自由转动,就做成了一个测量工具,则AB的长等于内槽宽,那么判定B的理由是24如图,在四边形中,90,4,连接,C若P是边上一动
7、点,则长的最小值为25如图,中,90,点M在线段上,A,垂足为G,与相交于点H若8,则三解答题(共15小题)26已知:如图,C为上一点,点A,D分别在两侧,求证:27已知:如图,是与的平分线,求证:28已知,如图所示,于点E,于点F,求证:29如图,C是的中点,求证:B30已知:如图,在梯形中,平分,的延长线交于点E求证:(1);(2)31如图,已知,E;求证:32如图,把一个直角三角形(90)绕着顶点B顺时针旋转60,使得点C旋转到边上的一点D,点A旋转到点E的位置F,G分别是,上的点,延长与交于点H(1)求证:;(2)求出的度数33已知,如图,与都是等腰直角三角形,90,D为边上一点求证:
8、34如图,点M、N分别是正五边形的边、上的点,且,交于点P(1)求证:;(2)求的度数35如图,四边形中,E点在上,其中90,且,求证:与全等36如图,与都是等腰三角形,且90,90,B,C,D在同一条直线上求证:37我们把两组邻边相等的四边形叫做“筝形”如图,四边形是一个筝形,其中,对角线,相交于点O,垂足分别是E,F求证38如图,在中,90,于点E,平分交于点F,的延长线交于点G求证:(1);(2)39如图:在中,、分别是、两边上的高,在上截取,在的延长线上截取,连接、(1)求证:;(2)与的位置关系如何,请说明理由40如图,已知中,10,8,点D为的中点(1)如果点P在线段上以3的速度由
9、B点向C点运动,同时,点Q在线段上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1s后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?初二全等三角形所有知识点总结与常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一选择题(共14小题)1(2013西宁)使两个直角三角形全等的条件是()A一个锐角对应相等B两个锐角对应相等C一条边对应相等D两条边对应相等【分析】利用全等三角形的判定
10、来确定做题时,要结合已知条件与三角形全等的判定方法逐个验证【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确故选:D【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有、,可以发现至少得有一组对应边相等,才有可能全等2(2013安顺)如图,已知,那么添加下
11、列一个条件后,仍无法判定的是()ACBCD【分析】求出,再根据全等三角形的判定定理判断即可【解答】解:,A、在与中(),正确,故本选项错误;B、根据,不能推出,错误,故本选项正确;C、在与中(),正确,故本选项错误;D、,C,在与中(),正确,故本选项错误;故选B【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有,3(2014秋江津区期末)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()ABCD【分析】根据图象,三角形有两角与它们的夹边是完整的,所以可以根据“角边角”画出【解答
12、】解:根据题意,三角形的两角与它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形故选D【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键4(2007中山)到三角形三条边的距离都相等的点是这个三角形的()A三条中线的交点B三条高的交点C三条边的垂直平分线的交点D三条角平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点【解答】解:角的平分线上的点到角的两边的距离相等,到三角形的三边的距离相等的点是三条角平分线的交点故选:D【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两
13、边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C5(2011呼伦贝尔)如图,A,=30,则的度数为()A20B30C35D40【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可【解答】解:A,A,即+ABA,=B,又B30=30故选:B【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解6(2000安徽)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中
14、心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处故选:D【点评】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解7(2014遂宁)如图,是中的角平分线,于点E,S7,2,4,则长是()A3B4C6D5【分析】过点D作于F,根据角平分线上的点到角的两边距离相等可得,再根据S列出方程求解即可【解答】解:如图,过点D作于F,是中的角平分线,由图可知,S,
15、42+2=7,解得3故选:A【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键8(2013铁岭)如图,在与中,已知,还需添加两个条件才能使,不能添加的一组条件是()A,EB,C,DDE,D【分析】根据全等三角形的判定方法分别进行判定即可【解答】解:A、已知,再加上条件,E可利用证明,故此选项不合题意;B、已知,再加上条件,可利用证明,故此选项不合题意;C、已知,再加上条件,D不能证明,故此选项符合题意;D、已知,再加上条件E,D可利用证明,故此选项不合题意;故选:C【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、注意:、不能判定两个三角形全等
16、,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角9(2015湖州)如图,已知在中,是边上的高线,平分,交于点E,5,2,则的面积等于()A10B7C5D4【分析】作于F,根据角平分线的性质求得2,然后根据三角形面积公式求得即可【解答】解:作于F,平分,2,S52=5,故选C【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键10(1998南京)要测量河两岸相对的两点A,B的距离,先在的垂线上取两点C,D,使,再定出的垂线,使A,C,E在一条直线上(如图所示),可以说明,得,因此测得的长就是的长,判定最恰当的理由是()A边角边
17、B角边角C边边边D边边角【分析】由已知可以得到,又,由此根据角边角即可判定【解答】解:,又,故选B【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的11(2017石家庄模拟)如图,的三边,长分别是20,30,40,其三条角平分线将分为三个三角形,则S:S:S等于()A1:1:1B1:2:3C2:3:4D3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C故选C【点评】本题主
18、要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式做题时应用了三个三角形的高时相等的,这点式非常重要的12(2009鸡西)尺规作图作的平分线方法如下:以O为圆心,任意长为半径画弧交,于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧交于点P,作射线由作法得的根据是()ABCD【分析】认真阅读作法,从角平分线的作法得出与的两边分别相等,加上公共边相等,于是两个三角形符合判定方法要求的条件,答案可得【解答】解:以O为圆心,任意长为半径画弧交,于C,D,即;以点C,D为圆心,以大于长为半径画弧,两弧交于点P,即;在与中故选:D【点评】本题考查三角形全等的判定方法,判定两个三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 全等 三角形 所有 知识点 总结 考题 提高 难题 压轴 练习 答案 解析
限制150内