一线三等角典型例题(3页).doc
《一线三等角典型例题(3页).doc》由会员分享,可在线阅读,更多相关《一线三等角典型例题(3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-一线三等角典型例题-第 3 页 “ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,DPC=A=B=90.求证:ADBC=APBP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当DPC=A=B=时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足DPC=A.设点P 的运动时间为t(秒),当以D 为圆心,以DC
2、 为半径的圆与AB相切,求t 的值. 变式1 ( 2012 年烟台) ( 1) 问题探究 如图6,分别以ABC 的边AC 与边BC 为边,向ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使AHK = ACD1 作D1M KH,D2N KH,垂足分别为点M、N 试探究线段D1M 与线段D2N 的数量关系,并加以证明( 2) 拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使AH1K1 = BH2K2 = ACD1 作D1M K1H1,D2NK2H2,垂足分别为点M、N D1M
3、 = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由2 如图8,若将 中的“正三角形”改为“正五边形”,其他条件不变 D1M = D2N 是否仍成立? ( 要求: 在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形 例1、在ABC中,AB =2,B = 45,以点A为直角顶点作等腰tADE,点D 在BC 上,点E 在AC上,若CE=5,求CD的长。例2、 ( 2013 年海淀区一模22 题最后一问) 如图,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是21/5,l2、l3之间的距离是21/10,等边ABC 的三个顶点分别在l1、l
4、2、l3上,求ABC 的边长例3、如图,在矩形纸片A 中,在 边上取点,现将纸片沿 翻折,使点 落在 边上的点 处,当时,求 的长。 三、应用举例1、等腰三角形底边上的一线三等角例1、如图5,在 三角形ABC中,AB=AC,D为BC的中点,以D为顶点作MDN=B.(1) 如图5,当射线DN经过A时,DM交AC边于点E,不添加辅助线,写出图中所有与三角形ADE相似的三角形。(2) 如图6,将MDN绕点D逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点,(E和A点不重合),不添加辅助线,写出图中所有相似的三角形,并证明。(3) 在图6中,若AB=AC=10,BC=12,当三角形DEF的面积
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一线 等角 典型 例题
限制150内