人教版初中数学知识点总结全面.docx
《人教版初中数学知识点总结全面.docx》由会员分享,可在线阅读,更多相关《人教版初中数学知识点总结全面.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 人教新版初中数学学问点总结(全面最新)七年级数学(上)学问点第一章 有理数一 学问框架二学问概念 1.有理数:(1)凡能写成形式的数,都是有理数.(2)有理数的分类: 留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;2数轴:数轴是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,互为相反数,即a和- a互为相反数;0的相反数还是0;(2) a+b=0 a、b互为相反数.4.肯定值:(1)肯定值的意义是数轴上表示某数的点分开原点的间隔 ;(2) 或或;正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;肯定值的问题常常
2、分类探讨,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,肯定值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 0,小数-大数 0.6.倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若 a0,那么的倒数是;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取一样的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数及0相加,仍得这个数.8有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
3、9有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律:a(b+c)=ab+ac .12有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数,.13乘方的定义:(1)求一样因式积的运算,叫做乘方;(2
4、)乘方中,一样的因式叫做底数,一样因式的个数叫做指数,乘方的结果叫做幂;14有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .15科学记数法:把一个大于10的数记成a10n的形式,(其中1a10)这种记数法叫科学记数法.16.近似数的准确位:一个近似数,四舍五入到那一位,就说这个近似数的准确到那一位.17.有效数字:从左边第一个不为零的数字起,到准确的位数止,全部数字,都叫这个近似数的有效数字.18.
5、混合运算法则:先乘方,后乘除,最终加减. 第二章 整式的加减 一学问框架二.学问概念1单项式:数字或字母的乘积叫单项式.2单项式的系数及次数:单项式中不为零的数字因数,叫单项式的系数;单项式中全部字母指数的和,叫单项式的次数.3多项式:几个单项式的和叫多项式.4多项式的项数及次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。5.同类项:所含字母一样,并且一样字母的指数也一样的单项式叫做同类型。6.合并同类项:将同类项的系数相加减,字母和字母的指数不变。第三章 一元一次方程一 学问框架二学问概念1一元一次方程:只含有一个未知数,并且
6、未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).3一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).4列一元一次方程解应用题: (1)读题分析法: 多用于“和,差,倍,分问题”细致读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,削减,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量及量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”.4列方程解应用题的常用公
7、式:(1)行程问题: 间隔 =速度时间 ;(2)工程问题: 工作量=工效工时 ;(3)比率问题: 局部=全体比率 ;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价折 ,利润=售价-本钱, ;(6)周长、面积、体积问题:C圆=2R,S圆=R2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=R2h ,V圆锥=R2h.第四章 图形的相识初步学问框架二学问概念1.立体图形及平面图形的联络: 立体图形的三视图是平面图形;立体图形的绽开图是平面图
8、形;面动成体.2.直线、射线、线段的区分(1)端点各数:直线没有端点,射线有一个端点,线段有两个端点;(2)可度量性:直线和射线都不行度量,所以没有大小可言,线段有大小;(3)延长性:直线可以向两个方向延长;射线可以向一个方向延长;线段没有延长性;.角的表示方法:三个大些字母适用于任何角; 一个大些字母适用独立角; 一个阿拉伯数字或希腊字母适用非复合角; 余角和补角:和为的两个角互为余角;和为的两个角互为补角;.定理、公理: ()两点确定一条直线; ()两点之间线段最短; ()等角(或同角)的余角相等,等角(或同角)的补角相等;七年级数学(下)学问点第五章 相交线及平行线一、学问框架二、学问概
9、念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3.垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线。4.平行线:在同一平面内,永不相交的两条直线叫做平行线。5.同位角、内错角、同旁内角:同位角:1及5、2及像这样具有一样位置关系的一对角叫做同位角。内错角:及6、及像这样的一对角叫做内错角。同旁内角:及5、及像这样的一对角叫做同旁 内角。6.命题:推断一件事情的语句叫命题。7.平移:在平面内,将一个图形沿某个方向挪动肯定的间隔 ,图形的这种挪动叫做平移变换
10、,简称平移。8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点挪动后得到的,这样的两个点叫做对应点。9.对顶角的性质:对顶角相等。10垂线的性质:性质1:过一点有且只有一条直线及已知直线垂直。性质2:连接直线外一点及直线上各点的全部线段中,垂线段最短。11.平行公理:经过直线外一点有且只有一条直线及已知直线平行。平行公理的推论:假如两条直线都及第三条直线平行,那么这两条直线也相互平行。12.平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。13.平行线的断定:断定1:同位角相等,两直线平行。断定2:内错角相等,两直线平行
11、。断定3:同旁内角互补,两直线平行。第六章 实数1.算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a0时,a才有算术平方根。2.平方根:一般地,假如一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。.实数的分类第七章 平面直角坐标系一学问框架二学问概念1.有序数对:有依次的两个数a及b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在
12、平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。3.横轴、纵轴、原点:程度的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。5.象限:两条坐标轴把平面分成四个局部,右上局部叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。留意:坐标轴上的点不在任何一个象限内。第八章 二元一次方程组一学问构造图二、学问概念1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=
13、c(a0,b0)。2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知
14、数,这种方法叫做加减消元法,简称加减法。第九章 不等式及不等式组一学问框架二、学问概念1.用符号“”“”“ ”“”“”表示大小关系的式子叫做不等式。2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。3.不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。7.不等式的性质:不等式的根本性质1:不等式的两边都加上(或减去)同一个数(或式子), 不等
15、号的方向不变。不等式的根本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的根本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向变更。第十章 数据的搜集、整理及描绘一学问框架全面调查抽样调查搜集数据描绘数据整理数据分析数据得出结论二学问概念1.全面调查:考察全体对象的调查方式叫做全面调查。2.抽样调查:调查局部数据,依据局部来估计总体的调查方式称为抽样调查。3.总体:要考察的全体对象称为总体。4.个体:组成总体的每一个考察对象称为个体。5.样本:被抽取的全部个体组成一个样本。6.样本容量:样本中个体的数目称为样本容量。7.频数:一般地,我们称落在不同小组中的
16、数据个数为该组的频数。8.频率:频数及数据总数的比为频率。9.组数和组距:在统计数据时,把数据依据肯定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。八年级数学(上)学问点第十一章 三角形一学问框架二学问概念1.三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三边关系:三角形随意两边的和大于第三边,随意两边的差小于第三边。3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。5.角平分线:三角形的一个内角的平分线及这个角的对边相交,这个角的顶点
17、和交点之间的线段叫做三角形的角平分线。6.三角形的稳定性:三角形的形态是固定的,三角形的这特性质叫三角形的稳定性。6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。7.多边形的内角:多边形相邻两边组成的角叫做它的内角。8.多边形的外角:多边形的一边及它的邻边的延长线组成的角叫做多边形的外角。9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。11.平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全覆盖,叫做用多边形覆盖平面。12.公式及性质三角形的内角和:三角形的内角和为180;三
18、角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。性质2:三角形的一个外角大于任何一个和它不相邻的内角。多边形内角和公式:n边形的内角和等于(n-2)180多边形的外角和:多边形的内角和为360。多边形对角线的条数:从n边形的一个顶点动身可以引(n-3)条对角线,把多边形分词(n-2)个三角形,n边形共有条对角线。第十二章 全等三角形一学问框架二学问概念1.全等三角形:大小和形态完全一样的两个三角形叫做全等三角形。2全等三角形的性质: 全等三角形的对应角相等、对应边相等。 3.三角形全等的断定公理及推论有: (1)“边角边”简称“SAS”:两边及其夹角对应相等,两三角形全等
19、; (2)“角边角”简称“ASA”:两角及其夹边对应相等,两三角形全等;(3)“边边边”简称“SSS” :三组对应边相等,两三角形全等;(4)“角角边”简称“AAS”:两角及其中一角的对边对应相等,两三角形全等;(5)斜边和直角边相等的两直角三角形全等,简称“HL”。4.角平分线推论:角的内部到角的两边的间隔 相等的点在角的平分线上。第十三章 轴对称一学问框架二学问概念1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的局部可以相互重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。(2)角平分线上的点到角两边间隔
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初中 数学 知识点 总结 全面
限制150内