高二数学选修21知识点总结完整版.docx
《高二数学选修21知识点总结完整版.docx》由会员分享,可在线阅读,更多相关《高二数学选修21知识点总结完整版.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学选修21学问点1、命题:用语言、符号或式子表达的,可以推断真假的陈述句.真命题:推断为真的语句.假命题:推断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,假如一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,假如一个命题的条件和结论恰好是另一个命题的条件的否认和结论的否认,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.5、对于两个
2、命题,假如一个命题的条件和结论恰好是另一个命题的结论的否认和条件的否认,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若,则”,则它的否命题为“若,则”.6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假四种命题的真假性之间的关系:两个命题互为逆否命题,它们有一样的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系7、若,则是的充分条件,是的必要条件若,则是的充要条件(充分必要条件)8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假
3、命题用联结词“或”把命题和命题联结起来,得到一个新命题,记作当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题对一个命题全盘否认,得到一个新命题,记作若是真命题,则必是假命题;若是假命题,则必是真命题9、短语“对全部的”、“对随意一个”在逻辑中通常称为全称量词,用“”表示含有全称量词的命题称为全称命题全称命题“对中随意一个,有成立”,记作“,”短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示含有存在量词的命题称为特称命题特称命题“存在中的一个,使成立”,记作“,”10、全称命题:,它的否认:,全称命题的否认是特称命题11、平面内及两个定点,的间
4、隔 之和等于常数(大于)的点的轨迹称为椭圆这两个定点称为椭圆的焦点,两焦点的间隔 称为椭圆的焦距12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到对应准线的间隔 为,点到对应准线的间隔 为,则14、平面内及两个定点,的间隔 之差的肯定值等于常数(小于)的点的轨迹称为双曲线这两个定点称为双曲线的焦点,两焦点的间隔 称为双曲线的焦距15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于
5、原点中心对称离心率准线方程渐近线方程16、实轴和虚轴等长的双曲线称为等轴双曲线17、设是双曲线上任一点,点到对应准线的间隔 为,点到对应准线的间隔 为,则18、平面内及一个定点和一条定直线的间隔 相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围22、空间向量的概念:在空间,具有大小和方向的量称为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 选修 21 知识点 总结 完整版
限制150内