高中数学必修2知识点总结归纳整理.docx
《高中数学必修2知识点总结归纳整理.docx》由会员分享,可在线阅读,更多相关《高中数学必修2知识点总结归纳整理.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修二空间几何体1.1空间几何体的构造棱柱 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是及底面全等的多边形。棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧
2、面、对角面都是三角形;平行于底面的截面及底面相像,其相像比等于顶点到截面间隔 及高的比的平方。棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCDABCD几何特征:上下底面是相像的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线及轴平行;轴及底面圆的半径垂直;侧面绽开图是一个矩形。圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个
3、圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上随意一点到球心的间隔 等于半径。1.2空间几何体的三视图和直观图1.中心投影及平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。平行投影:在一束平行光照耀下形成的投影叫做平行投影。2.三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3.直观图:斜二测画法斜
4、二测画法的步骤:(1).平行于坐标轴的线依旧平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。1.3空间几何体的外表积及体积(1)几何体的外表积为几何体各个面的面积的和。(2)特别几何体外表积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式球体的外表积和体积公式:V= ; S=空间点、直线、平面的位置关系公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:推断直线是否在平面内用符号语言表示公理1:公理2:经过不在同一条直线上的三点,有且只有一个平面。推论
5、:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:它是空间内确定平面的根据 它是证明平面重合的根据公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面和相交,交线是a,记作a。符号语言: 作用:它是断定两个平面相交的方法。它说明两个平面的交线及两个平面公共点之间的关系:交线必过公共点。它可以推断点在直线上,即证若干个点共线的重要根据。公理4:平行于同一条直线的两条直线相互平行空间两条直线的位置关系位置关系公共点的个数共面直线相交直线在同一个平面内,有且仅有一个公共点平行直线在同一个平面内,没有公共点异面直线不同在
6、任何一个平面内,没有公共点直线及平面的位置关系位置关系公共点的个数直线在平面内直线上有两个点在平面内,则这条直线上的全部点都在平面内直线在平面外直线和平面相交直线及平面有且仅有一个公共点直线和平面平行直线及平面没有公共点空间直线及直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线断定:过平面外一点及平面内一点的直线及平面内不过该店的直线是异面直线 异面直线所成角:直线a、b是异面直线,经过空间随意一点O,分别引直线aa,bb,则把直线a和b所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0,90,若两条异面
7、直线所成的角是直角,我们就说这两条异面直线相互垂直。说明:(1)断定空间直线是异面直线方法:根据异面直线的定义;异面直线的断定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角(7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。三种位置关系的符号表示:a aA a(8)平面及平面之间的位置关系:平行没有公共点;相交有一条公共直线。b空间中的平行问题直线和平面平行:直线及平面没
8、有公共点,则称直线及平面平行,记作两个平面平行:没有公共点的两个平面叫做平行平面。(1)直线及平面平行的断定及其性质线面平行的断定定理:平面外一条直线及此平面内一条直线平行,则该直线及此平面平行。 线线平行线面平行线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 线面平行线线平行(2)平面及平面平行的断定及其性质两个平面平行的断定定理:假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 线面平行面面平行假如两个平面同垂直于一条直线,那么这两个平面平行平行于同一个平面的两个平面平行两个平面平行的性质定理(1)假如两个平面平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结 归纳 整理
限制150内