《最新数学七年级上册32优质公开课获奖教案设计文案.docx》由会员分享,可在线阅读,更多相关《最新数学七年级上册32优质公开课获奖教案设计文案.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、最新数学七年级上册32优质公开课获奖教案设计文案 最新数学七年级上册32教案文案1 教学目标 1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数; 2. 会初步应用正负数表示具有相反意义的量; 3.使学生初步了解有理数的意义,并能将给出的有理数进行分类; 4.培养学生逐步树立分类讨论的思想; 5. 通过本节课的教学,渗透对立统一的辩证思想。 教学建议 一、重点、难点分析 本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。 正、负数的引入,有各种不同的方
2、法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0高5摄氏度记作5,比0 低5摄氏度,记作-5;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概
3、念。 关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。 二、教法建议 这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了. 为了使学生掌握必要的数学思想和方法,在明确有理数的分
4、类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。 三、正数与负数概念的理解 1对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。 2引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如-6,-4,-2,0,2,4,6,不能被2整除的数是奇数,如-5,-4,-2,1,3,5 3到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把
5、有理数分为三类:正数、0、负数,进行讨论。 4通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。 四、有理数的分类 整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。 2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。 3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。 4)分数和小数的区别: 分数(既约分数)都可表示成小数,但不是所有的小数都能表示
6、成分数的。 5)到目前为止,所学过的数(除外)都是有理数。 最新数学七年级上册32教案文案2 教学目标分析: (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算; (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法 (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。 教学重难点分析: 1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数
7、乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。 2、教学重、难点 教学重点:理解乘方定义,会进行有理数的乘方运算; 教学难点:有理数乘方运算的符号法则的形成与运用 教法学法分析: 教法:启发式教学,多媒体辅助教学; 学法:观察、比较、归纳,合作探究。 教学过程设计: 1、创设情境提出问题 (1)、边长为3的正方形的面积是_ 33可以记作_,读作_. (2)、棱长为3的正方体的体积是_ 333可以记作_,读作_. 通过创设问题情境,唤起旧知,为学习新知做好铺垫 2、自主探索形成新知 观察下列各式有何特征? (1)2222= (2)(-3)(-3)(-3)= 引导学生通过类
8、比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。 3、应用新知 巩固概念 练习1、2巩固乘方定义及乘方表示的注意点,培养学(cn-)生良好的学习习惯。例题进一步强化乘方运算 4、探索研究 发现规律 通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。 5、应用新知 巩固训练 进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力 6、拓展思维 知识延伸 利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。 7、课堂小结 归纳反思 锻
9、炼学生及时总结的良好习惯和归纳能力 教学评价分析: 对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性; (1)关注学生的智力参与度 (2)学生的课堂参与度 2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。 最新数学七年级上册32教案文案3 一:说教材: 1 教材的地位和作用 本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。 3 教育目标 (1)、知识与能力 能按照有理数加减乘除的运算顺序,正确熟练地进行
10、运算。 培养学生的观察能力、分析能力和运算能力。 (2)、过程与方法 培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。 (3)、情感态度价值观 通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。 4 教学重点和难点 重点和难点是如何利用有理数列式解决实际问题及正确而 合理地进行计算。 二:说教法 鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主
11、线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。 三:说学法指导 本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。 四:师生互动活动设计 教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。 五:说教学程序 (课本36页)例9:某公司去年13月份平均每月亏损1.5万元,46月份平均每月盈利2万元,710月份平均每月盈利1.7万元,1112月份平均每月亏损2.3万元,这
12、个公司去年盈亏情况如何? 师生共析:认真审题,观察、分析本题的问题共同回答以下问题: 1 全年哪几个月是亏损的?哪几个月是的盈利的? 2 各月亏损与盈利情况又如何? 3 如果盈利记为“ ”,亏损记为“-”,那么全年亏损多少? 盈利多少? 6 你能将亏损情况与盈利情况用算式列出来吗? (5)通过算式你能说出这个公司去年盈亏情况如何吗? 【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。 【教法说明】:此题一方面可以复习加(cn-)法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了
13、学生的观察,分析题目的能力。为以后解决实际问题做准备。 (三):归纳小结 今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察分析动手”的过程用数学的形式表现出来,直观准确的解决问题。 六:说板书设计 板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。 最新数学七年级上册32教案文案4 教学目标 1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2. 掌握点到直线的距离的概念,并会度量点到直线的距离。 3. 掌握垂线的性质,并会利用所学知识进行简单的推理。 教学重点与难点
14、1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 教学过程设计 一. 复习提问: 1、 叙述邻补角及对顶角的定义。 2、 对顶角有怎样的性质。 二.新课: 引言: 前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。 (一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线AB、CD互相垂直,记作 ,垂足为O。 请同学举出日常生活中,两条直线互相垂直的实例。 注意: 1、 如遇
15、到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之, (二)垂线的画法 探究: 1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法: 让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。 注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质 经过一点(已知直
16、线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1 过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 探究: 如图,连接直线l外一点P与直线l上各点O, A,B,C,其中 (我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC的长短,这些线段中,哪一条最短? 性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成: 垂线段最短。 (四)点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点 P到直线l的距离。 例1 (1)AB与AC互相垂直; (2)AD与AC互相垂直; (3)点C到A
17、B的垂线段是线段AB; (4)点A到BC的距离是线段AD; (5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。 其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A 例2 如图,直线AB,CD相交于点O, 解:略 例3 如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近, 行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。 练习: 1. 2.教材第9页3、4 教材第10页9、10、11、12 小结: 1. 要掌握好垂线、垂线段、点到直线的距离这几个概念
18、; 2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6. 最新数学七年级上册32教案文案5 教学目标 1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容; 3.会根据几何语句画图,会用直尺和三角板画平行线; 4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角; 4.了解平行线在实际生活中的应用,能举例加以说明. 教学重点与难点 1.教学重点:平行线的概念与平行公理; 2.教学难点:对平行公理的理解. 教学过程 一、复习提
19、问 相交线是如何定义的? 二、新课引入 平面内两条直线的位置关系除平行外,还有哪些呢? 制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念. 三、同一平面内两条直线的位置关系 1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作ab. (画出图形) 2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行. 3.对平行线概念的理解: 两个关键:一是“在同一个平面内”(举例说明);二是“不相交”. 一个前提:对两条直线而言. 4.平行线的画法 平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边
20、落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线). 四、平行公理 1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 提问垂线的性质,并进行比较. 3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果ba,ca,那么bc. 五、三线八角 由前面的教具演示引出. 如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对. 六、
21、课堂练习 1.在同一平面内,两条直线可能的位置关系是 . 2.在同一平面内,三条直线的交点个数可能是 . 3.下列说法正确的是( ) A.经过一点有且只有一条直线与已知直线平行 B.经过一点有无数条直线与已知直线平行 C.经过一点有一条直线与已知直线平行 D.经过直线外一点有且只有一条直线与已知直线平行 4.若 与 是同旁内角,且 =50,则 的度数是( ) A.50 B.130 C.50或130 D.不能确定 5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( ) A.1 B.2 C.3 D.4 6.如图,直线AB,CD被DE所截,则1和 是同位角,1和 是内错角,1和 是同旁内角.如果5=1,那么1 3. 七、小结 让学生独立总结本节内容,叙述本节的概念和结论. 八、课后作业 1.教材P19第7题; 2.画图说明在同一平面内三条直线的位置关系及交点情况. 补充内容 1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的, 试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)
限制150内