初一上册数学优质公开课获奖教案设计2022范文.docx





《初一上册数学优质公开课获奖教案设计2022范文.docx》由会员分享,可在线阅读,更多相关《初一上册数学优质公开课获奖教案设计2022范文.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初一上册数学优质公开课获奖教案设计2022范文 初一上册数学教案2022范文1 一、素质教育目标 (一)知识教学点 1.了解:代数和的概念. 2.理解:有理数加减法可以互相转化. 3.应用:会进行加减混合运算. (二)能力训练点 培养学生的口头表达能力及计算的准确能力. (三)德育渗透点 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想. (四)美育渗透点 学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美. 二、学法引导 1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题. 2.学生写
2、法:练习寻找简单的一般性的方法练习巩固. 三、重点、难点、疑点及解决办法 1.重点:把加减混合运算算式理解为加法算式. 2.难点:把省略括号和的形式直接按有理数加法进行计算. 四、课时安排 1课时 五、教具学具准备 投影仪或电脑、自制胶片. 六、师生互动活动设计 教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈. 七、教学步骤 (一)创设情境,复习引入 师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7. 师:(1)读出这两个算式. (2)“+、-”读作什么?是哪种符号? “+、-”又读作什么?是什
3、么符号? 学生活动:口答教师提出的问题. 师继续提问:(1)这两个题目运算结果是多少? (2)(-11)-7这题你根据什么运算法则计算的? 学生活动:口答以上两题(教师订正). 师小结:减法往往通过转化成加法后来运算. 【教法说明】为了进行,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作. 师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的.(板书课题2.7(1) 教学说明:由复习的题目
4、巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成. (二)探索新知,讲授新课 1.讲评(-9)+(-6)-(-11)-7. (1)省略括号和的形式 师:看到这个题你想怎样做? 学生活动:自己在练习本上计算. 教师针对学生所做的方法区别优劣. 【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法. 师:我们对此类题目经常采用先把减法转化为加
5、法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即: 原式=(-9)+(+6)+(+11)+(-7) =-9+6+11-7. 提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成 学生活动:先自己练习尝试用两种读法读,口答(教师纠正). 【教法说明】教师根据学生所做的方法,及时指出代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力. 巩固练习:(出示投影1) 1.把下列算式写成省略括号和的形式,并把结果用两种
6、读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)+()-()-(). 2.判断 式子-7+1-5-9的正确读法是(). A.负7、正1、负5、负9; B.减7、加1、减5、减9; C.负7、加1、负5、减9; D.负7、加1、减5、减9; 学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答. 【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法. 2.用加法运算律计算出结果 师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数
7、放在一起分别相加. -9+6+11-7 =-9-7+6+11. 学生活动:按教师要求口答并读出结果. 巩固练习:(出示投影2) 填空: 1.-4+7-4=-_-_+_ 2.+6+9-15+3=_+_+_-_ 3.-9-3+2-4=_9_3_4_2 4._ 学生活动:讨论后回答. 【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点. 师:-9-7+6+11怎样计算? 学生活动:口答 板书 -9-7+6+11 =-16+17 =1 巩固
8、练习:(出示投影3) 1.计算(1)-1+2-3-4+5; (2). 2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3; (2). 学生活动:四个同学板演,其他同学在练习本上做. 【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中. 师小结:有理数加减法混合运算的题目的步骤为: 1.减法转化成加法; 2.省略加号括号; 3.运用加法交换律使同号两数分别相加; 4.按有理数加法法则计算. (三)反馈练习 (出示投影4) 计算:(1)12-(-18)+(-
9、7)-15; (2). 学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的. 【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈. (四)归纳小结 师:1.怎样做加减混合运算题目? 2.省略括号和的形式的两种读法? 学生活动:口答. 【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统. 八、随堂练习 1.把下列各式写成省略括号的和的形式 (1)(-5)+(+7)-(-3)-(+1); (2)10+(-8)-(+18)-(-5)+(+6). 2.说出式子-3+5-6+1的两种读法. 3.计算 (1)0-10-(-8)+
10、(-2); (2)-4.5+1.8-6.5+3-4; (3). 九、布置作业 (一)必做题:1.计算:(1)-8+12-16-23; (2); (3)-40-28-(-19)+(-24)-(-32); (4)-2.7+(-3.2)-(1.8)-2.2; (二)选做题:(1)当时,哪个,哪个最小? (2)当时,哪个,哪个最小? 十、板书设计 随堂练习答案 1.(1)-5+7+3-1;(2)10-8-18+5+6. 2.负3加5减6加1或负3、5、负6、1的和。 3.(1)-4;(2)-10.2;(3)-. 作业 答案 (一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3 初一上册
11、数学教案2022范文2 教学目标 让学生熟练地进行有理数加减混合运算,并利用运算律简化运算. 教学重点和难点 重点:加减运算法则和加法运算律. 难点:省略加号与括号的代数和的计算. 课堂教学过程 设计 一、从学生原有认知结构提出问题 什么叫代数和?说出-6+9-8-7+3两种读法. 二、讲授新课 1.计算下列各题: 2.计算: (1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3; (7)-6-8-2+3.54-4.72+16.46-5.28; 3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值: (1)a-(b+c);(2)a-b-c
12、;(3)a-(b+c+d);(4)a-b-c-d; (5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d; (9)(a-c)-(b-d);(10)a-c-b+d. 请同学们观察一下计算结果,可以发现什么规律? a-(b+c)=a-b-c; a-(b+c+d)=a-b-c-d; a-(b-d)=a-b+d; (a+b)-(c+d)=a+b-c-d; (a-c)-(b-d)=a-c-b+d. 括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变. 4.用较简便方法计算: (4)-16+25+16
13、-15+4-10. 三、课堂练习 1.判断题:在下列各题中,正确的在括号中打“”号,不正确的在括号中打“”号: (1)两个数相加,和一定大于任一个加数.() (2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.() (3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.() (4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.() (5)两数差一定小于被减数.() (6)零减去一个数,仍得这个数.() (7)两个相反数相减得0.() (8)两个数和是正数,那么这两个数一定是正数.() 2.填空题: (1)一个数的绝对值等于它本身,这个数一定是_;一个数的倒数等
14、于它本身,这个数一定是_;一个数的相反数等于它本身,这个数是_. (2)若a0,那么a和它的相反数的差的绝对值是_. (3)若|a|+|b|=|a+b|,那么a,b的关系是_. (4)若|a|+|b|=|a|-|b|,那么a,b的关系是_. (5)-(-3)=_,-(+3)=_. 这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化. 四、作业 1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值: (1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c. 2.分别根据下列条件求代数式x-y-z+w的值: (1)x=-3,y=
15、-2,z=0,w=5; (2)x=0.3,y=-0.7,z=1.1,w=-2.1; 3.已知3a=a+a+a,分别根据下列条件求代数式3a的值: (1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5. 4.(1)当b>0时,a,a-b,a+b,哪个?哪个最小? (2)当b0时,a,a-b,a+b,哪个?哪个最小? 5.判断题:对的在括号里打“”,错的在括号里打“”,并举出反例. (1)若a,b同号,则a+b=|a|+|b|.() (2)若a,b异号,则a+b=|a|-|b|.() (3)若a0、b0,则a+b=-(|a|+|b|).() (4)若a,b异号,则|a-b|=|
16、a|+|b|.() (5)若a+b=0,则|a|=|b|.() 6.计算:(能简便的应当尽量简便运算) 课堂教学设计说明 1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能.讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正. 2.关于“去括号法则”,只要求学生了解,并不要求追究所以然. 初一上册数学教案2022范文3 教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算; 2.了解倒数概念,会求给定有理数的倒数; 3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运
17、算,培养学生的运算能力。 教学建议 (一)重点、难点分析 本节教学的重点是熟练进行运算,教学难点 是理解法则。 1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。 2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。 (二)知识结构 (三)教法建议 1.学生实际运算时,老师要强调先确定商
18、的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。 2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。 3.理解倒数的概念 (1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。 (2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以
19、看作,分子、分母颠倒位置后为,就是的倒数。 (3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。 4.关于倒数的求法要注意: (1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可. (2)正数的倒数是正数,负数的倒数仍是负数. (3)负倒数的定义:乘积是-1的两个数互为负倒数. 教学设计示例 一、素质教育目标 (一)知识教学点 1.了解有理数除法的定义. 2.理解倒数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 上册 数学 优质 公开 获奖 教案设计 2022 范文

限制150内