北师大版初一数学上学期优质公开课获奖教案设计最新文案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北师大版初一数学上学期优质公开课获奖教案设计最新文案.docx》由会员分享,可在线阅读,更多相关《北师大版初一数学上学期优质公开课获奖教案设计最新文案.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版初一数学上学期优质公开课获奖教案设计最新文案 北师大版初一数学上学期教案最新文案1 教学目标 1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 3, 体验数形结合的思想。 教学难点 归纳相反数在数轴上表示的点的特征 知识重点 相反数的概念 教学过程(师生活动) 设计理念 设置情境 引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类 4, -2,-5,+2 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。 (引导学生观察
2、与原点的距离) 思考结论:教科书第13页的思考 再换2个类似的数试一试。 归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力 培养学生的观察与归纳能力,渗透数形思想 深化主题提炼定义 给出相反数的定义 问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。 规律:一般地,数a的相反数可以表示为-a 思考:数轴上表示相反数的两个点和原点有什么关系? 练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。 深化相反数的概念;“零的相反数是零”是相反数定义
3、的一部分。 强化互为相反数的数在数轴上表示的点的几何意义 给出规律 解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 学生交流。 分别表示+5和-5的相反数是-5和+5 练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法 小结与作业 课堂小结 1, 相反数的定义 2, 互为相反数的数在数轴上表示的点的特征 3, 怎样求一个数的相反数?怎样表示一个数的相反数? 本课作业 1, 必做题 教科书第18页习题1.2第3题 2, 选做题 教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,相反数的概念使有理数的各个运算法则容易表述,
4、也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想. 2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法. 3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余
5、地. 北师大版初一数学上学期教案最新文案2 绝对值 教学目标 1,掌握绝对值的概念,有理数大小比较法则. 2,学会绝对值的计算,会比较两个或多个有理数的大小. 3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想. 教学难点 两个负数大小的比较 知识重点 绝对值的概念 教学过程(师生活动) 设计理念 设置情境 引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,用有理数表示黄老师两次所行的路程;如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升? 学生思考后,教师作如下说明
6、: 实际生活中有些问题只关注量的具体值,而与相反 意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关; 观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离. 学生回答后,教师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负 数表示,后一问的解答则与符号没有关系
7、,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体 验数学知识与生活实际的联系. 因为绝对值概念的几何意义是数形转化的典型 模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备. 合作交流 探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对 有什么规律?、 -3,5,0,+58,0.6 要求小组讨论,合作学习. 教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页). 巩固练习:教科书第15页练习. 其中第1题按
8、法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概 念的一个应用,所以安排此例. 学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论. 结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题: 把14个气温从低到高排列; 把这14个数用数轴上的点表示出来; 观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生交流
9、后,教师总结: 14个数从左到右的顺序就是温度从低到高的顺序: 在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数. 在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系. 要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性 数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形
10、的想象。 课堂练习 例2,比较下列各数的大小(教科书第17页例) 比较大小的过程要紧扣法则进行,注意书写格式 练习:第18页练习 小结与作业 课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小? 本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10 2, 选做题:教师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,情景的创设出于如下考虑:体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释
11、,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受. 2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。 3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原
12、点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习. 4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 北师大版初一数学上学期教案最新文案3 教学目标 1.了解的概念和的画法,掌握的三要素; 2.会用上的点表示有理数,会利用比较有理数的大小; 3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。 教学建议 一、重点、难点分析 本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概
13、念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础. 二、知识结构 三、教法建议 小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的
14、任意性。 关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。 四、的相关知识点 1.的概念 (1)规定了原点、正方向和单位长度的直线叫做. 这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的. (2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数. 以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合
15、的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习. 2.的画法 (1)画直线(一般画成水平的)、定原点,标出原点“O”. (2)取原点向右方向为正方向,并标出箭头. (3)选适当的长度作为单位长度,并标出,-3,-2,-1,1,2,3各点。具体如下图。 (4)标注数字时,负数的次序不能写错,如下图。 3.用比较有理数的大小 (1)在上表示的两数,右边的数总比左边的数大。 (2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。 (3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写
16、成“ ”。 五、定义的理解 1.规定了原点、正方向和单位长度的直线叫做,如图1所示. 2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2). A点表示-4; B点表示-1.5; O点表示0; C点表示3.5; D点表示6. 从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道: 正数都大于0,负数都小于0,正数大于一切负数. 因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。 同理, ,表示 是负数;反之 是负数也可以表示为 。 3.正常见几种错误 1)没有方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 初一 数学 上学 优质 公开 获奖 教案设计 最新 文案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内