对数函数知识点总结.docx
《对数函数知识点总结.docx》由会员分享,可在线阅读,更多相关《对数函数知识点总结.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、对数函数(一)对数1对数的概念:一般地,如果,那么数叫做以为底的对数,记作:( 底数, 真数, 对数式)说明: 注意底数的限制,且; 注意对数的书写格式两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数(二)对数的运算性质如果,且,那么:;注意:换底公式(,且;,且;)利用换底公式推导下面的结论(1);(2)(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+)注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数 对数函数对底数的限制:,且2、对数函数的性质:a10a0
2、得,函数的定义域是;(2)由得,函数的定义域是;(3)由9-得-3,函数的定义域是例2求函数和函数的反函数。解:(1); (2) 例4比较下列各组数中两个值的大小: (1),; (2),; (3),.解:(1)对数函数在上是增函数,于是;(2)对数函数在上是减函数,于是;(3)当时,对数函数在上是增函数,于是, 当时,对数函数在上是减函数,于是例5比较下列比较下列各组数中两个值的大小:(1),; (2),; (3),; (4),解:(1), ,; (2), ,(3), , , (4), 例7求下列函数的值域:(1) ;(2);(3)(且)解:(1)令,则, , ,即函数值域为 (2)令,则,
3、, 即函数值域为 (3)令, 当时, 即值域为, 当时, 即值域为例8判断函数的奇偶性。解:恒成立,故的定义域为, ,所以,为奇函数。例9求函数的单调区间。解:令在上递增,在上递减,又, 或,故在上递增,在上递减, 又为减函数,所以,函数在上递增,在上递减。例10若函数在区间上是增函数,的取值范围。解:令, 函数为减函数,在区间上递减,且满足,解得,所以,的取值范围为解 (2)1(xa)0,(xa)1当a1时,0xaa,函数的定义域为(a,0)当0a1时,xaa,函数的定义域为(0,)域和值域反函数的定义域为(0,1),值域为yR【例3】 作出下列函数的图像,并指出其单调区间(1)(x)(2)
4、21|解 (1)(x)的图像与的图像关于y轴对称,如图283所示,单调减区间是(,0)解 (2)先作出函数2的图像,再把它的图像向左平移1个单位就得y21|的图像如图284所示单调递减区间是(,1)单调递增区间是(1,)的图像,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为所示单调减区间是(1,2单调增区间是2,)解 (4)函数2(x)的图像与函数2x的图像关于y轴对称,故可先作2(x)的图像,再把y2(x)的图像向右平移1个单位得到2(1x)的图像如图286所示单调递减区间是(,1)【例4】 图287分别是四个对数函数,的图像,那么a、b、c、d的大小关系是 AdcbaBabcdC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数 函数 知识点 总结
限制150内