创新设计管道履带式机器人.docx
《创新设计管道履带式机器人.docx》由会员分享,可在线阅读,更多相关《创新设计管道履带式机器人.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、履带式管道机器人创新设计 专业班级: 机械设计 姓名: 学号: 引言现代工农业生产与日常生活中使用着大量管道,如核电厂的蒸汽发生器传热管、石油、化工、制冷行业的工业管道和煤气管道等,多数管道安装环境人不能直接到达或不允许人直接介入,为了进行质量检测和故障诊断,采用传统的全面挖掘法、随机抽样法或SCADA 系统法,工程量大,准确率低,因此需要开发管道机器人来解决这些实际问题。管道机器人是一种可沿管道内部或外部移动,携带一种或多种传感器与操作器,在操作人员的遥控操作或计算机的自动控制下,能够进行一系列管道作业的机电仪一体化系统。管道机器人可完成的作业有生产、安装过程中的管内外质量检测;使用过程中焊
2、缝情况、表面腐蚀、裂缝破损等故障诊断;恶劣环境下管道清扫、喷涂、焊接、内部抛光等维护;对埋地旧管道的修复;管内外器材运送、抢救等其他用途。1绪论 管道机器人在人类社会中已经迅速的漫延开来,这一切都应归公于它自身的特点。因此,国内外都在不断的开发和研制更适合管内行走的管道机器人,并开始走向微型化、智能化,使之性能更宜人化,可控性更好,准确性更高。但是管道机器人由于受到它工作环境的限制和沉重的任务负担,致使它也不断面临着更多,更严重的困难和问题。如何解决?已经成为现代人的责任和发展方向。1.1管道机器人发展概况1.1.1国外管道机器人研究进展国外关于燃气管道机器人的研究始于20世纪40年代,由于7
3、0年代的微电子技术、计算机技术、自动化技术的发展,管道检测机器人技术于90年代初得到了迅猛发展并接近于应用水平。日本机器人的发展经过了60年代的摇篮期,70年代的实用期,到80年代进入普与提高期,开始在各个领域内广泛推广使用机器人。日本管道机器人众多,东京工业大学航空机械系Shigeo Hirose和Hidetaka Ohno等于1993年开始研究管道机器人,先后研制成功适用于直径50mm管道的Thes-、Thes-型管道机器人和适用于直径150mm管道的Thes-型管道机器人。德国工业机器人的总数占世界第三位,仅次于日本和美国。德国学者Bemhard Klaassen、Hermann Str
4、eich和Frank Kirchner等人在德国教育部的资助下于2000年研制成功了多关节蠕虫式管道机器人系统 MAKRO。1.1.2国内管道机器人研究进展国内管道机器人研究进展国内在管道机器人方面的研究起步较晚,而且多数停留在实验室阶段。哈尔滨工业大学邓宗全教授在国家“863”计划课题“X”射线检测实时成像管道机器人的研制” 的支持下,开展了轮式行走方式的管道机器人研制。上海大学研制了“细小工业管道机器人移动探测器集成系统”。其主要包含20mm内径的垂直排列工业管道中的机器人机构和控制技术(包括螺旋轮移动机构、行星轮移动机构和压电片驱动移动机构等)、机器人管内位置检测技术、涡流检测和视频检测
5、应用技术,在此基础上构成管内自动探测机器人系统。该系统可实现20mm管道内裂纹和缺陷的移动探测。在北京市优秀人才项目的资助下,进行了仿蝎型管道机器人的研究工作。仿蝎管道机器人可以相对较易地跨过比较大的障碍,并且机器人的足所具有的自由度可以使机器人的运动更加灵活,可以在可达到的管面上选择最优支撑点,即使在管面极度不规则的情况下,通过严格选择足的支撑点,也能够行走自如,对凹凸不平表面的适应能力更强,机构模型如图1-1所示。 图1-1仿蝎管道机器人机构模型1.2典型的管道机器人1) 蠕动式管道机器人1988年,Ikuta等引用蚯蚓运动的原理开发出了蠕动机器人,后来随着蠕动机器人技术的不断完善,其开始
6、向大型化发展,目前已可在200300 mm的管道内应用。蠕动式管道机器人主要由蠕动部分、头部、尾部组成,如图1-2所示,1头部,2蠕动部分,3尾部。前部和尾部支撑分别装有超越离合锁死装置,实现单向运动自锁。中间蠕动部分提供机器人运动的动力。对于蠕动动力机构,目前有很多实现形式:如上海大学利用气压伸缩驱动;上海交通大学利用形状记忆合金伸缩驱动;昆明理工大学利用电磁吸合驱动如图1-3,1磁铁,2弹簧,3线圈等。下面以电磁驱动的蠕动式管道机器人为例,分析蠕动式管道机器人的运动机理。蠕动式管道机器人的运动原理如图1-4所示,1头部,2蠕动部分,3尾部,一个动作循环分为3个步骤:(1)当初始状态时,电磁
7、铁失电,弹簧处于自由状态,故头部与尾部分离;(2)当电磁铁通电时,磁铁与线圈吸合,安装在头部上的超越单向行走方式使头部原位不动,尾部由于电磁吸力的作用向前移动;(3)断开电源,电磁力作用消失,弹簧促使磁铁与线圈分开,安装在尾部上的超越单向行走方式使尾部原位不动,头部由于弹簧力的作用向前移动。至此,机器人回到了初始状态,机器人前进了一步。蠕动机器人优点是可在细小的微型管道中行走。但由于速度的间断性和缓慢性阻碍了它的发展。 图1-2 蠕动式机器人总体结构图图1-3 蠕动驱动电磁铁图 图1-4 蠕动机器人运动原理图2) 轮式管道机器人目前,轮式管道机器人是实际工程中应用最多的一种。轮式管内移动机器人
8、行走的基本原理是驱动轮靠弹簧力、液压、气动力,磁性力等压紧在管道内壁上以支承机器人本体并产生一定的正压力,由驱动轮与管壁之间的附着力产生机器人前后行走的驱动力,以实现机器人的移动。轮式管道机器人的行走方式有2种:直进式和螺旋运动方式。3) 无缆管道机器人20世纪50年代,由于电子技术,计算机技术等还很落后,美、德、日等国开发了无动力管内检测设备。此种设备依靠首尾两端管内流体的压力差产生驱动力,随管内流体的流动向前移动。这就是所说的无缆管道机器人。随着科学技术的进步,此类机器人也有了很大发展。1.3所需解决的关键技术问题1) 能源供给问题2) 可靠性问题3) 速度与位置识别4) 管道机器人的越障
9、能力5) 高度自治的控制系统1.4 管道X射线探伤技术最新进展在五大常规无损检测方法中,射线检测和超声检测是比较可靠和有效的管道焊缝检测方法。射线检测对管道焊缝中的气孔、夹渣、疏松等体积型缺陷的检测灵敏度较高,对平面缺陷的检测灵敏度较低,如当射线方向与平面缺陷(如裂纹)垂直时就很难检测出来,只有当裂纹与射线方向平行时才能对其进行有效的检测。对此,为了弥补X射线探伤的一些缺陷,大量的研究对其进行了分析和优化。1.4.1 X射线照相检测技术目前,工程中应用的管道对接焊缝无损检测方法都是基于X射线检测技术的,如外部透照法,采用定向X射线源从管道外侧透照,在管道另一侧的胶片上感光成像,每道环形焊缝的检
10、测需转换多次X射线源的投照角度。应用于小管径管道对焊缝的无损探伤,该方法存在双层壁投影而导致评片困难的特点。而又如内部透照法,智能移动载体携带周向X射线源进入管道,将X射线源焦点对准于管道环状焊缝处,如图1-9所示。该机器人采用CCD实现精确定位。图1-9 管道射线检测机器1.4.2 X射线实时成像检测技术X射线实时成像检测技术主要有两大类:一种是基于X射线图像增强器的实时成像技术的,另一种是X射线数字实时成像检测技术。基于X射线图像增强器的实时成像技术如图1-10所示,1X射线源,2被检测件,3图像增强器,4图像采集卡,5计算机,被检测件的X射线图像经图像增强器成像后,由图像采集系统采集并传
11、输到计算机中。图1-10 基于图像增强器的X射线实时面像检测系统一种是X射线数字实时成像检测技术,如图1-11所示,1X射线源,2被检测件,3计算机,4CMOS数字成像板,亦称为X射线数字照相。被检测件的X射线图像经由CMOS数字成像后,直接转化为数字信号并传输到计算机中。图1-11 X射线数字照相检测系统图像增强器诞生于20世纪50年代初,经过几十年的发展,主要是改进图像增强器输入屏材料以提高亮度。现在图像增强器的亮度增益提高了10几倍,亮度增益高达10000以上,输出屏上的图像亮度可达0.3x103cd/m2。尽管如比,随着CMOS技术的不断完善,X射线数字照相是X射线实时成像检测技术最终
12、发展目标,也必将在我国得到应用。比较两种X射线实时成像检测技术,基于X射线图像增强器的实时成像技术,就目前技术水平而言,比X射线数字实时成像检测技术更具有工程意义,并且,其成像质量与胶片照相底片相当甚至更好。1.5本次设计的主要研究内容和研究意义本设计是针对中型管道安全检测探伤的实现而提出的,并结合当今机器人的发展趋势,利用现代先进科学技术,对管内X射线无损检测机器人的机械结构进行设计和优化,充分利用现代视觉传感器和人工智能方面的优势,对机器人的智能化做一些有意义的研究工作。其目的是通过对管道X射线无损检测探伤机器人设计,与相关技术的查阅和应用,能够研制一台具有良好的弯道通过能力、视觉定位能力
13、并能适应较长距离检测作业的实用样机。本论文主要设计内置动力的履带式管内X射线无损检测机器人的机械结构。其主要内容为:1)通过查阅资料,了解管内机器人常用机构和先进技术,融合自己的知识,对内置动力源的管内X射线无损检测机器人总体设计提出方案和实现办法;并阐述机器人的结构、特点、工作原理;2)通过利用最优化设计和机械手册,并结合一些相似结构,对设计的机器人的总体结构进行分析和优化,让机体内耗减到最小,包括机构之间的摩擦,自身的重量,而有效的加强履带与管壁之间的接触面积,加大摩擦力,提高本体的牵引力和推动力;3)通过利用三维软件,将管道内检测机器人各机构进行建模,同时进行各部分的装配,目地是调整各配
14、合部分、连接部分之间的配合尺寸,使各机构能够相互协调运动,使整个机体能够协调平稳的工作。其主要目标设计管内X射线无损检测机器人调整机构和驱动机构。2管内X射线检测机器人方案的确定管道机器人通常是由驱动器、移动机构、转向机构和工作装置等几部分组成。其中驱动机械和移动方式有较大程度上决定了机器人的整个机械结构。管道机器人的移动方式可以分为轮式、履带式、足式、蠕动式、螺旋式和流体推动式等,各自有各自的优缺点。2.1 管道机器人的驱动方式2.1.1 管道机器人的驱动方式由于管道机器人是在管道限定的环境里运行,尤其是在有弯曲的管道里运行,一方面,机器人在弯管(包括垂直管道)行走中要有足够的摩擦力来克服重
15、力的影响,另一方面需要提供足够大的驱动力来克服各种阻力。驱动器的选择在很大程度上决定了管道机器人的体积、重量和性能指标。现在使用的驱动方式主要有:(1)电磁驱动。最常用的是微电机,微电机又分为有刷直流电机、无刷直流电机、步进电机和舵机等。(2)压电驱动。压电材料是一种受力即产生应变,在其表面出现与外力成比例电荷的材料,又称压电陶瓷。(3)形状记忆合金。形状记忆合金是一种特殊的合金,其形状记忆效应产生的主要原因是相变,其相变是由可逆的热弹性马氏体的相变产生,一旦使他记忆了任意形状,当加热到某一适当的温度时,则恢复为变形前的形状。(4)超声波驱动是利用超声波振动作为驱动力,即由振动部分和移动部分组
16、成,靠振动部分和移动部分之间的摩擦力来驱动的一种驱动器,它具有结构简单、体积小、响应快、力矩大,不需要减速就可以低速运行,常用于照相机快门的动作等。超声波驱动由三种驱动方式:振动方向变换型、行进波型和复合振动型,这两种驱动方式一般应用在微机器人上。(5)气动驱动。利用压缩空气驱动气动马达或气缸运动,适合潮湿恶劣的环境,不需要电源,但运动精度比较低。(6)人工肌肉是一种新型的气动橡胶驱动器(仿生物肌肉驱动),结构是由内部橡胶筒套与外部纤维编织网构成,当对橡胶筒套充气时,橡胶筒套因弹性变形压迫外部编织网,由于编织网刚度很大,限制其只能径向变形,直径变大,长度缩短。如图2-1所示,1橡胶筒套,2纤维
17、层,3螺丝口部,其缺点是:(1)气动人工肌肉与传统气动执行元件相比行程小;(2)气动人工肌肉的变形为非线性环节,具有时变性,使准确控制其位移十分困难;(3)在工作过程中,气动人工肌肉自身温度会发生变化,随着温度的变化,其性能也会改变,这给高精度控制带来困难。图2-1 人工肌肉结构简图2.1.2驱动方式的选择本设计的管道机器人选用电磁驱动的驱动方式,采用微型直流电动机进行驱动,选用充电电池作为电源,即可避免机器人拖缆线,减轻机器人的重量,减轻机器人在管道内部运动的阻力。2.1.3 驱动电机的选择步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新 设计 管道 履带式 机器人
限制150内