不同翅片形式管翅式换热器流动换热性能比较(36页).doc
《不同翅片形式管翅式换热器流动换热性能比较(36页).doc》由会员分享,可在线阅读,更多相关《不同翅片形式管翅式换热器流动换热性能比较(36页).doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-不同翅片形式管翅式换热器流动换热性能比较-第 32 页不同翅片形式管翅式换热器流动换热性能比较摘 要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实
2、验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。关键词:翅片形式;管翅式;换热器;关联式;流动换热性能Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fin types Abstract: With the development of refrigeration and air condition
3、ing, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind ofcompactheat exchanger, fin-and-tubeheatexchangerhasa wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to i
4、mprove the heat exchanger thermal efficiency and the overall performance of heat transfer.This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin ty
5、pes are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers.Key words: Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Ex
6、perimental correlations; Comparison目录1 绪论2课题背景及研究意义1管翅式换热器简介1管翅式换热器的特点21.4 管翅式换热器的换热过程2研究现状3国外实验及模拟研究进展3国内研究现状和数值模拟4管翅式换热器及发展趋势61.6 管翅式换热器的不同形式的翅片研究现状72影响翅片换热和压降性能的主要结构因素9翅片间距对换热特性和压降特性的影响10管排数对换热特性和压降特性的影响10管径对换热特性和压降特性的影响11管间距对换热特性和压降特性的影响113不同翅片经验关系式总结及比较123.1 平直翅片经验关系式的总结123.2 波纹翅片经验关系式的总结163.3
7、百叶窗翅片经验关系式的总结213.4 开缝翅片经验关系式的总结244四种翅片经验关系式比较29结论36参考文献38致谢421 绪论课题背景及研究意义换热器是国民生产中的重要设备,其应用遍及动力、冶金、化工、炼油、建筑、机械制造、食品、医药及航空等各工业部门。例如,过路热力系统中的过热器、省煤器、空气预热器、凝汽器、除氧器、给水加热器、冷却塔等;金属冶炼系统中的热风炉、空气或煤气预热器、废热锅炉等;制冷及低温系统中的蒸发器、冷凝器、回热器等;石油化工工业中广泛采用的加热及冷却设备等,制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,这些都是换热器应用的大量实例。它不但是一种广泛应用的通用设备,并且在某
8、些工业企业中占有很重要的地位。例如在是有化工工厂中,它的投资要占到整个建厂投资的1/5左右,它的重量站工艺设备总重的40%;在年产30万吨的乙烯装置中,它的投资站总投资的25%。由于世界上燃煤、石油、天然气资源储量有限而面临这能源短缺的局面,各国都致力于新能源的开发,并积极开展预热回收及节能工作,因而换热器的应用又与能源的开发及节约有着密切的联系。在这一工作中,换热器也充当着一个重要的角色,其性能的好坏也直接影响到能源利用的效益。热交换器作为一种利用能源与节约能源的有效设备,在余热利用、核能利用、太阳能利用和地热利用等方面也起着重要的作用。随着我国工业的不断发展,对能源利用、开发的合理性与有效
9、性的要求不断提高,因而对换热器性能的要求也日益增加。特别是对换热器的研究必须满足各种特殊情况和苛刻条件的要求,对它的研究也就显得更为重要。因此,在换热器的生产及研究开发上除了满足各种必需的工艺条件之外,对它的综合性能也提出了更高的要求。管翅式换热器简介换热器是热力系统的关键设备,管翅式换热器是比较常用的换热器结构形式。翅片分为单、双或多排结构。这种形式的换热器具有结构简单,便于加工、装配的特点,广泛的应用于石油化工、航空、车辆、动力机械、空分、深低温领域、原子能和宇宙航天等工业部门。管翅式换热器的基本结构是由翅片、隔板、封条和导流片组成的通道。它是在金属平板上放一翅片,然后再在其上放一金属平板
10、,两边以封条密封而组成一个个基本单元。管翅式换热器的芯体则是由多个这样的单位组成。如果对各个通道进行不同的叠置和排列并钎焊成整体,即可得到最常用的错流、逆流、错逆流管翅式换热器芯体、管翅式换热器内 可组成各种形式的流道,为使流体分布更加均匀,在流道的两段部均设置导流片,在导流片上开设许多小孔,使流体能够相互穿通。一般情况下,从强度、热绝缘和制造工艺等要求出发,芯体顶部和底部还各留着若干曾假翅片层。在芯体的两段配置适当的流体出入口封头,即可组装成完整的管翅式换热器。翅片是管翅式换热器的最基本的原件,传热过程主要是依靠翅片来完成的,一部分直接由板来完成。翅片与隔板的连接均为焊钳,因此大部分热量经翅
11、片,通过隔板传到了冷流体。由于翅片传热不隔板是直接传热,故翅片又有“二次表面”之称。二次传热表面一般比一次传热表面的传热效率低。翅片除承担主要的传热任务外,还起着两隔板之间的加强作用,所以尽管翅片和隔板材料都很薄,但其强度很高,故能承受较高的压力。管翅式换热器的特点1、高效节能:其换热系数在30004500kcal/m2Ch,比管壳式换热器的热效率高35倍。2、结构紧凑:板式换热器板片紧密排列,与其他换热器类型相比,板式换热器的占地面积和占用空间较少,面积相同换热量的板式换热器仅为管壳式换热器的1/5。3、容易清洗拆装方便:板式换热器靠夹紧螺栓将夹固板板片夹紧,因此拆装方便,随时可以打开清洗,
12、同时由于板面光洁,湍流程度高,不易结垢。4、使用寿命长:板式换热器采用不锈钢或钛合金板片压制,可耐各种腐蚀介质,胶垫可随意更换,并可方便在、拆装检修。5、适应性强:板式换热器板片为独立元件,可按要求随意增减流程,形式多样;可适用于各种不同的、工艺的要求。6、不串液,板式换热器密封槽设置泄液液道,各种介质不会串通,即使出现泄露,介质总是向外排出。1.4 管翅式换热器的换热过程在空调中,换热器的结构采用铜管套翅片而组成传热管束,即锡翅片穿在直径较小的紫铜管上。管翅式换热器换热过程:制冷剂(高温)通过铜管将热量以热传导的方式传递给管外的翅片,翅片将热量以对流的方式传递给其表面的的冷空气(常温),通过
13、不停吹入新的冷空气达到增强冷却的目的。管翅式换热器的翅片结构形式对其传热性能和阻力性能有很大的影响。管翅式换热器的翅片型式很多,从最初的平直翅片到波纹翅片、银齿形翅片、百叶窗式翅片及打孔式翅片等。平直翅片加工制造方便、不易发生变形及装配简单。波纹翅片可使介质的流向不断改变以促进瑞流,提高传热效率,强化换热,可用于压力较高的气体场合本文研究了倾角均匀的波纹翅片及新型的倾角渐增的波纹翅片和前平直后倾角均勾的波纹翅片的圆管换热器的翅片结构对流体流动和换热过程的影响。研究现状国外实验及模拟研究进展1973年,Rich28实验研究14种不同结构平翅片,结果表明,在其研究范文内,翅片间距不影响传热效率,单
14、根管子的压降和管排数无关。1974年,Saboya等29首次在复杂的单排平翅片管换热器的翅片侧利用实验定量计算局部传热系数,总结出翅片表面局部Sh数的分布;得出翅片管上游的局部换热系数较高,下游的局部换热系数较低。1978年,McQuiston6得出特定结构参数下的翅片换热及压降关联式。而后Xu31模拟研究空调单元中蒸发器的湍流流动。利用热线风速仪技术得到平均速度值和流动的湍流参数,由于凝结物的影响,实验结果会有流动干扰;运用U-e瑞流模型榄拟空调单元空气流动,得到的结架十分准确,再加上QUICK方法得到的平均速度提供了更加准确的结果。另外,混合网格能快速达到收敛,并很好与实验结架达到一致。1
15、996年,Rammohan Rao47等实验研究水平翅片自然对流和辐射换热的关系。借助干涉仪和数侦微分方获得对流换热量和福射换热量,并得到Nu和Re的关联式。1998年,Abumadi48等人提出前人得到的换热及压降关联式对结构参数耍求过十局限,对28种不同结构参数的翅片管换热器进行实验,风速范围内为l-20m/s,分析管排数、翅片的厚度、翅片间距以及管排间距等参数对换热因子与摩擦因子的影响。实验表明:翅片类型影响换热因子和摩擦因子,管排数对阻力系数几乎无影响;翅片厚度越小,传热性能越好。同年,Meyer42采用实验研究了空气的入口尺寸和出口速度分布都影响换热器的空气流动特性。Atkinson
16、等49对百叶窗形式的翅片管换热器用Star-CD进行了二维与二维数值模拟。1999年,Wang15等提出,通过增加翅片密度并促进流体瑞流,可以增加紧凑型气-气换热器空气侧流体的换热面积。增加翅片密度形式多样,例如平翅片、条缝翅片、西叶窗翅片等等。该作者在原有气换热器基础上,用三种方法增加条缝翅片,做大量实验检测换热器性能,实验结果表明:换热系数和压降值随翅片密度的增加相应增大。2001年,Meyer42又对翅片管换热器的入口处中气流动损失进行实验研究,发现入口交气流动损失量与通过换热器的中气平均速度无关,而与入口处空气和进口的倾斜角有关;利用实验结果总结出无量纲压降报尖系数。在文献42中,作者
17、对9种结构不的双金属螺旋翅符进行了传热和阻力性能的分析。水在管内流动,交气垂直流向管子,为获得传热系数采用NTU法,给出了气侧压降关于几何参数的关联式。结来表明,空气侧的传热系数比文献中关联式大20%左右,;空气被冷却得到的换热系数比空气被加热得到的换热系数大。研究发现,翅片间距降低,管排数倍加,其余结构参数不变的情况下,空气侧换热系数降低:针对不同排管的换热器,以管外径为均最进径,Re数变化范围从500到900,翅片间距从lmm降低到,空气侧换热系数会降低大约10%;同翅片间距情形下,管排数从1增加到4,换热系数会逐渐降低;与顺排换热器相比,叉排换热器提高了换热性能。2007年,Sahin等
18、1三维数值模拟研究平翅片管换热器进口角度和换热特性的关系。2009年,Naphon50模拟研究波纹片结构参数对温度和流动分的影响。得出在热流条件情况下,流体流过波纹片,不断破坏热边界条件:波纹夹角的大小影响换量。所以,V型波纹片是增强换热和加强换热器紧密性的好方法。2010年,Choi41等对34个不同结构尺寸的换热器进行实验研究,得出结论:不连续的翅片换热器的j因子方程式与式结构尺相关,对于翅片间距从变化到15mrn的情况,不连续平翅片换热器的j因子比连续平翅片管换热器的J因子高6.0%-11.6%。2010印,BoiTajo-Pelaez等44对平翅片管空气侧换热特性模拟。以前对空气侧换热
19、特性的模拟只是分析换热器空气侧,而把翅片与管壁温度设为定值。该作者模拟的目的是证明只考虑空气侧的情况与同时考虑空气与水侧流动特性的情况存在不同,从数、翅片间距、管径尺寸、翅片长度和翅片厚度等几个方面讨论,得出换热值更加精确,更好的预测换热性能,该文章的模拟效果更接近实际情形。由于设备运行中热量散失增加,需要研究新方法提高冷凝器的换热性能。作者研究了在翅片表面开厂角翼处理,这一设计形成的纵向祸流促使冷热流体的混合,强化了换热。2012年,Aslam Bhutta43总结CFD在换热器研究领域的应用以及实现模拟效染所使)U的算法。通过前人的模拟结果可知CTD软件是展示换热器性能的有效工具。国内研究
20、现状和数值模拟数值模拟的基础是数值传热学,数值传热学是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(例如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。求解所建立起来的代数方程从而获得求解变量的近似值。数值模拟研究方法主要集中在下面两个方面:(1)几何参数对换热及流动的影响;(2)雷诺数 Re 对换热及流动的影响。通过数值模拟可以得到整个流场的基本信息,再通过计算得到想要的性能参数(如
21、Nu、压差 p、换热因子 j、阻力因子f 等等),对这些数据进行对比观察,得到所要结果。王先超、水黎明40等人,通过对波纹翅片数值模拟的分析,得出了影响波纹翅片换热因子j和阻力因子f 的因素,同时把不同雷诺数Re下的波纹翅片与矩形翅片(即平直翅片)、矩形开缝翅片(平直翅片开缝得到)进行了分析比较。结果发现:翅片厚度对波纹翅片的换热因子j 和阻力因子f 影响不大,但翅片间距sf对波纹翅片的阻力因子 f 影响较大;雷诺数 Re 在 4002000 范围内时,波纹翅片的换热因子 j 是同雷诺数下矩形翅片的 228 倍之间,阻力因子 f 是同雷诺数下矩形翅片的 284 倍;雷诺数在 200010000
22、 范围内,波纹翅片的换热因子 j 是同雷诺数下矩形翅片的 228 倍之间,阻力因子 f 是同雷诺数下矩形翅片的 354 倍;波纹翅片与矩形开缝翅片的阻力因子 j 随雷诺数的变化很小,两者非常接近。李媛26等人以 3 种常见的翅片类型(平直翅片、锯齿翅片、波纹翅片)为研究对象,利用标准k-双方程湍流模型求解三维Navier-Stokes方程,采用计算流体动力学(CFD)方法模拟和分析了板翅式换热器单通道中,不同结构参数和操作参数对翅片表面换热与流动的影响 ,并将不同实验参数下的数据制作成曲线图表,发现3种翅片的换热因子 j 和阻力因子 f 随雷诺数 Re 的增大而递减,这与他们的实验24得出的结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不同 形式 管翅式 换热器 流动 性能 比较 36
限制150内