三角形全等之倍长中线(习题及答案)(5页).doc
《三角形全等之倍长中线(习题及答案)(5页).doc》由会员分享,可在线阅读,更多相关《三角形全等之倍长中线(习题及答案)(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-三角形全等之倍长中线(习题及答案)-第 5 页三角形全等之倍长中线(习题) 例题示范例1:已知:如图,在ABC中,ABAC,D,E在BC上,且DE=EC,过D作DFBA交AE于点F,DF=AC求证:AE平分BAC【思路分析】读题标注:见中线,要倍长,倍长之后证全等结合此题,DE=EC,点E是DC的中点,考虑倍长,有两种考虑方法:考虑倍长FE,如图所示: 考虑倍长AE,如图所示: (这个过程需要考虑倍长之后具体要连接哪两个点)倍长中线的目的是为了证明全等:以方法为例,可证DEFCEG,由全等转移边和角,重新组织条件证明即可【过程书写】证明:如图,延长FE到G,使EG=EF,连接CG在DEF和C
2、EG中,DEFCEG(SAS)DF=CG,DFE=GDF=ACCG=ACG=CAEDFE=CAEDFABDFE=BAEBAE=CAEAE平分BAC 巩固练习1. 已知:如图,在ABC中,AB=4,AC=2,点D为BC边的中点,且AD是整数,则AD=_2. 已知:如图,BD平分ABC交AC于D,点E为CD上一点,且AD=DE,EFBC交BD于F求证:AB=EF3. 已知:如图,在ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,AB=AE,AC=AF,BAE=CAF=90求证:EF=2AD如图,在ABC中,AB AC,E为BC边的中点,AD为BAC的平分线,过E作AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 中线 习题 答案
限制150内