两角和与差的余弦公式教学设计(7页).doc
《两角和与差的余弦公式教学设计(7页).doc》由会员分享,可在线阅读,更多相关《两角和与差的余弦公式教学设计(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-两角和与差的余弦公式教学设计-第 7 页两角和与差的余弦公式教学设计一、教材地位和作用分析:两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。二、教学目标:1、知识目标:、 使学生了解平面内两点间距离公式的推导并熟记公式;、 使学生理解两角和与差的余弦公式和诱导公式的推导;、 使学生能够从正反两个方向运用公式解决简单应用问题。2、能力目标:、培养
2、学生逆向思维的意识和习惯;、培养学生的代数意识,特殊值法的应用意识;、培养学生的观察能力,逻辑推理能力和合作学习能力。3、情感目标: 、通过观察、对比体会公式的线形美,对称美; 、培养学生不怕困难,勇于探索的求知精神。三、教学重点和难点:教学重点:两角和与差的余弦公式的推导及运用。教学难点:两角和与差的余弦公式的灵活运用。四、教学方法:创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。从而体
3、现教师主导作用和学生主体作用的和谐统一。由此我决定采用以下的教学方法:创设情境-提出问题-探索尝试-启发引导-解决问题。 学法指导:1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。(体现学习过程中循序渐进,温故知新的认知规律。)2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。五、教学过程教 学 程 序设 计 意 图 课题引入让学生先讨论“cos(450+300)=cos450+cos300是否成立?”。(学生可能通过计算器、量余弦线的长度、特
4、殊角三角函数值和余弦函数的值域三种途径解决问题)。得出cos(450+300)cos450 +cos300。进而得出cos(+)cos+cos这个结论。此时再次提出那么cos(+)又等于什么呢? 这正是我们今天要研究的内容。揭示课题:两角和与差的余弦。通过创设问题情境,自然流畅地提出问题,揭示课题,引发学生思考。使学生目标明确、迅速进入角色。复习提问1、画出一个锐角、一个钝角的正弦线、余弦线。2、如果角的终边与单位圆相交于点P,点P的坐标能否用角的三角函数值表示?怎样表示?3、写出同一坐标轴上两点间距离公式。通过复习使学生熟悉基础知识、特别是用角的正、余弦表示特殊点的坐标,为新课的推进做准备。
5、引入新课在解决上面的问题之前,我们先来解决“平面内两点间距离的求法”这一问题。通过上面的复习,我们已经熟悉了同一坐标轴上两点间距离公式。那么,平面内两点间距离与坐标有什么样的关系呢?(通过特殊的例子让学生体会平面内两点间距离和同一坐标轴上两点间距离的关系。)让学生通过特殊值在转化到一般情况,符合学生的认知规律。教 学过程1、分析:设P1(x1,y1),P2(x2,y2)则有:M1(x1,0),M2(x2,0),N1 (0,y1),N2(0,y2)。通过演示课件提出问题:P1P2的长度与什么有关?根据图写出M1M2和N1N2。P1Q= M1M2=x2-x1QP2= N1N2=y2-y1根据勾股定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 余弦 公式 教学 设计
限制150内