大学物理试题库及答案详解考试必备分章节题库.docx
《大学物理试题库及答案详解考试必备分章节题库.docx》由会员分享,可在线阅读,更多相关《大学物理试题库及答案详解考试必备分章节题库.docx(152页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章质点运动学1 -1质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t t)时间内的位移为r, 路程为s, 位矢大小的变更量为r ( 或称r),平均速度为,平均速率为(1) 根据上述状况,则必有()(A) r= s = r(B) r s r,当t0 时有dr= ds dr(C) r r s,当t0 时有dr= dr ds(D) r s r,当t0 时有dr= dr = ds(2) 根据上述状况,则必有()(A) = ,= (B) , (C) = , (D) ,= 分析及解(1) 质点在t 至(t t)时间内沿曲线从P 点运动到P点,各量关系如图所示, 其中路程s P
2、P, 位移大小rPP,而r r-r表示质点位矢大小的变更量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能)但当t0 时,点P无限趋近P点,则有drds,但却不等于dr故选(B)(2) 由于r s,故,即但由于drds,故,即由此可见,应选(C)1 -2一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即(1);(2);(3);(4)下述推断正确的是()(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析及解表示质点到坐标原点的间隔 随时间的变更率,在极坐标系中叫径向速率通常用符
3、号vr表示,这是速度矢量在位矢方向上的一个重量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解故选(D)1 -3质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, a表示切向加速度对下列表达式,即(1)d v /dt a;(2)dr/dt v;(3)ds/dt v;(4)d v /dta下述推断正确的是()(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析及解表示切向加速度a,它表示速度大小随时间的变更率,是加速度矢量沿速度方向的一个重量,起变更速度大小的作用;在极坐
4、标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度a因此只有(3) 式表达是正确的故选(D)1 -4一个质点在做圆周运动时,则有()(A) 切向加速度确定变更,法向加速度也变更(B) 切向加速度可能不变,法向加速度确定变更(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度确定变更,法向加速度不变分析及解加速度的切向重量a起变更速度大小的作用,而法向重量an起变更速度方向的作用质点作圆周运动时,由于速度方向不断变更,相应法向加速度的方向也在不断变更,因此法向加速度是确定变更的至于a是否变更,则要视质点的速率状况而定质点作匀速
5、率圆周运动时, a恒为零;质点作匀变速率圆周运动时, a为一不为零的恒量,当a变更时,质点则作一般的变速率圆周运动由此可见,应选(B) *1 -5如图所示,湖中有一小船,有人用绳绕过岸上确定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作()(A) 匀加速运动, (B) 匀减速运动, (C) 变加速运动,(D) 变减速运动, (E) 匀速直线运动,分析及解本题关键是先求得小船速度表达式,进而推断运动性质为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为,其中绳长l 随时间t 而变更小船速度,
6、式中表示绳长l 随时间的变更率,其大小即为v0,代入整理后为,方向沿x 轴负向由速度表达式,可推断小船作变加速运动故选(C)探讨有人会将绳子速率v0按x、y 两个方向分解,则小船速度,这样做对吗?1 -6已知质点沿x 轴作直线运动,其运动方程为,式中x 的单位为m,t 的单位为 s求:(1) 质点在运动开场后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不变更时,位移的大小才会及路程相等质点在t 时间内的位移x 的大小可干脆由运动方程得到:,而在求路程时,就必需留意到质点在运动过
7、程中可能变更运动方向,此时,位移的大小和路程就不同了为此,需根据来确定其运动方向变更的时刻tp ,求出0tp 和tpt 内的位移大小x1 、x2 ,则t 时间内的路程,如图所示,至于t 4.0 s 时质点速度和加速度可用和两式计算解(1) 质点在4.0 s内位移的大小 (2) 由 得知质点的换向时刻为 (t0不合题意)则所以,质点在4.0 s时间间隔内的路程为 (3) t4.0 s时1 -7一质点沿x 轴方向作直线运动,其速度刚好间的关系如图(a)所示设t0 时,x0试根据已知的v-t 图,画出a-t 图以和x -t 图分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中
8、AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动)加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线又由速度的定义可知,x-t 曲线的斜率为速度的大小因此,匀速直线运动所对应的x -t 图应是始终线,而匀变速直线运动所对应的xt 图为t 的二次曲线根据各段时间内的运动方程xx(t),求出不同时刻t 的位置x,采纳描数据点的方法,可作出x-t 图解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为 (匀加速直线运动) (匀速直线运动) (匀减速直线运动)根据上述结果即可作出质点的a-t 图
9、图(B)在匀变速直线运动中,有由此,可计算在02和46时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作02和46时间内的x -t 图在24时间内, 质点是作的匀速直线运动, 其x -t 图是斜率k20的一段直线图(c)1 -8已知质点的运动方程为,式中r 的单位为m,t 的单位为求:(1) 质点的运动轨迹;(2) t 0 和t 2时,质点的位矢;(3) 由t 0 到t 2内质点的位移r 和径向增量r; *(4) 2 内质点所走过的路程s分析质点的轨迹方程为y f(x),可由运动方程的两个重量式x(t)和y(t)中消去t 即可得到对于r、r、r、s 来说,物理含义不同,可根据其定
10、义计算其中对s的求解用到积分方法,先在轨迹上任取一段微元ds,则,最终用积分求解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示(2) 将t 0和t 2分别代入运动方程,可得相应位矢分别为图(a)中的P、Q 两点,即为t 0和t 2时质点所在位置(3) 由位移表达式,得其中位移大小而径向增量*(4) 如图(B)所示,所求s 即为图中PQ段长度,先在其间随意处取AB 微元ds,则,由轨道方程可得,代入ds,则2内路程为1 -9质点的运动方程为式中x,y 的单位为m,t 的单位为试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向分析由运动方程
11、的重量式可分别求出速度、加速度的重量,再由运动合成算出速度和加速度的大小和方向解(1) 速度的重量式为当t 0 时, vox -10 m-1 , voy 15 m-1 ,则初速度大小为设vo及x 轴的夹角为,则12341(2) 加速度的重量式为则加速度的大小为设a 及x 轴的夹角为,则-3341(或32619)1 -10一升降机以加速度1.22 m-2上升,当上升速度为2.44 m-1时,有一螺丝自升降机的天花板上松脱,天花板及升降机的底面相距2.74 m计算:(1)螺丝从天花板落究竟面所须要的时间;(2)螺丝相对升降机外固定柱子的下降间隔 分析在升降机及螺丝之间有相对运动的状况下,一种处理方
12、法是取地面为参考系,分别探讨升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 y1(t)和y2 y2(t),并考虑它们相遇,即位矢一样这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应当是相对加速度升降机厢的高度就是螺丝(或升降机)运动的路程解1(1) 以地面为参考系,取如图所示的坐标系,升降机及螺丝的运动方程分别为当螺丝落至底面时,有y1 y2 ,即 (2) 螺丝相对升降机外固定柱子下降的间隔 为解2(1)以升降机为参考系,此时,螺丝相对它的加速度大小ag a,螺丝落
13、至底面时,有(2) 由于升降机在t 时间内上升的高度为则 1 -11一质点P 沿半径R 3.0 m的圆周作匀速率运动,运动一周所需时间为20.0,设t 0 时,质点位于O 点按(a)图中所示Oxy 坐标系,求(1) 质点P 在随意时刻的位矢;(2)5时的速度和加速度分析该题属于运动学的第一类问题,即已知运动方程r r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度)在确定运动方程时,若取以点(0,3)为原点的Oxy坐标系,并采纳参数方程xx(t)和yy(t)来表示圆周运动是比拟便利的然后,运用坐标变换x x0 x和y y0 y,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系
14、中质点P 在随意时刻的位矢采纳对运动方程求导的方法可得速度和加速度解(1) 如图(B)所示,在Oxy坐标系中,因,则质点P 的参数方程为坐标变换后,在Oxy 坐标系中有则质点P 的位矢方程为(2) 5时的速度和加速度分别为 1 -12地面上垂直直立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午200 时,杆顶在地面上的影子的速度的大小在何时刻杆影伸展至20.0 m?分析为求杆顶在地面上影子速度的大小,必需建立影长刚好间的函数关系,即影子端点的位矢方程根据几何关系,影长可通过太阳光线对地转动的角速度求得由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度这样,影子
15、端点的位矢方程和速度均可求得解设太阳光线对地转动的角速度为,从正午时分开场计时,则杆的影长为shtgt,下午200 时,杆顶在地面上影子的速度大小为当杆长等于影长时,即s h,则即为下午300 时1 -13质点沿直线运动,加速度a4 -t2 ,式中a的单位为m-2 ,t的单位为假设当t 3时,x9 m,v 2 m-1 ,求质点的运动方程分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必需在给定条件下用积分方法解决由和可得和如aa(t)或v v(t),则可两边干脆积分假设a 或v不是时间t 的显函数,则应经过诸如分别变量或变量代换等数学操作后再做积分解由分析知,应有得 (1)由 得
16、(2)将t3时,x9 m,v2 m-1代入(1) (2)得v0-1 m-1,x00.75 m于是可得质点运动方程为1 -14一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度aA -Bv,式中A、B 为正恒量,求石子下落的速度和运动方程分析本题亦属于运动学第二类问题,及上题不同之处在于加速度是速度v的函数,因此,需将式dv a(v)dt 分别变量为后再两边积分解选取石子下落方向为y 轴正向,下落起点为坐标原点(1) 由题意知 (1)用分别变量法把式(1)改写为 (2)将式(2)两边积分并考虑初始条件,有得石子速度 由此可知当,t时,为一常量,通常称为极限速度或收尾速度
17、(2) 再由并考虑初始条件有得石子运动方程1 -15一质点具有恒定加速度a 6i 4j,式中a的单位为m-2 在t0时,其速度为零,位置矢量r0 10 mi求:(1) 在随意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图分析及上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个重量ax 和ay分别积分,从而得到运动方程r的两个重量式x(t)和y(t)由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和,两个分运动均为匀变速直线运动读者不妨自己验证一下解由加速度定义式,根据初始条件t0 0时v0 0,积分可得又由和初始条件
18、t0 时,r0(10 m)i,积分可得由上述结果可得质点运动方程的重量式,即x 103t2y 2t2消去参数t,可得运动的轨迹方程3y 2x -20 m这是一个直线方程直线斜率,3341轨迹如图所示1 -16一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为(1) 试证位置A 和B 之间的平均加速度为;(2) 当分别等于90、30、10和1时,平均加速度各为多少? 并对结果加以探讨分析瞬时加速度和平均加速度的物理含义不同,它们分别表示为和在匀速率圆周运动中,它们的大小分别为, ,式中v可由图(B)中的几何关系得到,而t 可由转过的角度 求出由计
19、算结果能清晰地看到两者之间的关系,即瞬时加速度是平均加速度在t0 时的极限值解(1) 由图(b)可看到v v2 -v1 ,故而所以 (2) 将90,30,10,1分别代入上式,得以上结果说明,当0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度1 -17质点在Oxy 平面内运动,其运动方程为r2.0ti (19.0 -2.0t2 )j,式中r 的单位为m,t的单位为s求:(1)质点的轨迹方程;(2) 在t11.0s 到t2 2.0s 时间内的平均速度;(3) t1 1.0时的速度和切向和法向加速度;(4) t 1.0s 时质点所在处轨道的曲率半径分析根据运动方程可干脆写出其重
20、量式x x(t)和y y(t),从中消去参数t,即得质点的轨迹方程平均速度是反映质点在一段时间内位置的变更率,即,它刚好间间隔t 的大小有关,当t0 时,平均速度的极限即瞬时速度切向和法向加速度是指在自然坐标下的分矢量a 和an ,前者只反映质点在切线方向速度大小的变更率,即,后者只反映质点速度方向的变更,它可由总加速度a 和a 得到在求得t1 时刻质点的速度和法向加速度的大小后,可由公式求解(1) 由参数方程x 2.0t,y 19.0-2.0t2消去t 得质点的轨迹方程:y 19.0 -0.50x2 (2) 在t1 1.00 到t2 2.0时间内的平均速度(3) 质点在随意时刻的速度和加速度
21、分别为则t1 1.00时的速度v(t)t 12.0i -4.0j切向和法向加速度分别为(4) t 1.0质点的速度大小为则1 -18飞机以100 m-1 的速度沿程度直线飞行,在离地面高为100 m时,驾驶员要把物品空投到前方某一地面目的处,问:(1) 此时目的在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目的的视线和程度线成何角度?(3) 物品投出2.0后,它的法向加速度和切向加速度各为多少?分析物品空投后作平抛运动忽视空气阻力的条件下,由运动独立性原理知,物品在空中沿程度方向作匀速直线运动,在竖直方向作自由落体运动到达地面目的时,两方向上运动时间是一样的因此,分别列出其运动方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 试题库 答案 详解 考试 必备 章节 题库
限制150内