概率论与数理统计第四版习题答案盛骤浙江大学.docx
《概率论与数理统计第四版习题答案盛骤浙江大学.docx》由会员分享,可在线阅读,更多相关《概率论与数理统计第四版习题答案盛骤浙江大学.docx(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、完全版 最新概率论及数理统计习题答案 第四版 盛骤 (浙江高校)第一章 概率论的根本概念1.一 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)(一 1),n表小班人数(3)消费产品直到得到10件正品,记录消费产品的总件数。(一 2)S=10,11,12,n,(4)对某工厂出厂的产品进展检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停顿检查,或检查4个产品就停顿检查,记录检查的结果。查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停顿检查,或查满4次才停顿检查。(一 (3))S=00,100,0100,0101,1010,
2、0110,1100,0111,1011,1101,1110,1111,2.二 设A,B,C为三事务,用A,B,C的运算关系表示下列事务。(1)A发生,B及C不发生。表示为:或A (AB+AC)或A(BC)(2)A,B都发生,而C不发生。表示为:或ABABC或ABC(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S(A+B+C)或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。故 表示为:。(7)A,B,C中不多于二个发生。相当于:中至少有一个发生。故 表示为:(8)A,B,C
3、中至少有二个发生。相当于:AB,BC,AC中至少有一个发生。故 表示为:AB+BC+AC6.三 设A,B是两事务且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P(A) = 0.6,P (B) = 0.7即知AB,(否则AB=依互斥事务加法定理, P(AB)=P (A)+P (B)=0.6+0.7=1.31及P (AB)1冲突).从而由加法定理得P (AB)=P (A)+P (B)P (AB)(*)(1)从0P(AB)P(A)知,当AB=A,即AB时P(AB)取到最大值,最大值为
4、P(AB)=P(A)=0.6,(2)从(*)式知,当AB=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.71=0.3 。7.四 设A,B,C是三事务,且,. 求A,B,C至少有一个发生的概率。解:P (A,B,C至少有一个发生)=P (A+B+C)= P(A)+ P(B)+ P(C)P(AB)P(BC)P(AC)+ P(ABC)= 8.五 在一标准英语字典中具有55个由二个不一样的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?记A表“能排成上述单词” 从26个任选两个来排列,排法有种。每种排法等可能。字典中的二个不同字母组成的单词:55个
5、9. 在 号码薄中任取一个 号码,求后面四个数全不一样的概率。(设后面4个数中的每一个数都是等可能性地取自0,1,29)记A表“后四个数全不同” 后四个数的排法有104种,每种排法等可能。后四个数全不同的排法有10.六 在房间里有10人。分别佩代着从1号到10号的纪念章,随意选3人记录其纪念章的号码。(1)求最小的号码为5的概率。记“三人纪念章的最小号码为5”为事务A 10人中任选3人为一组:选法有种,且每种选法等可能。又事务A相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有(2)求最大的号码为5的概率。记“三人中最大的号码为5”为事务B,同上10人中任选3人,选法有种,且每种选法
6、等可能,又事务B相当于:有一人号码为5,其余2人号码小于5,选法有种11.七 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?记所求事务为A。在17桶中任取9桶的取法有种,且每种取法等可能。获得4白3黑2红的取法有故12.八 在1500个产品中有400个次品,1100个正品,随意取200个。(1)求恰有90个次品的概率。记“恰有90个次品”为事务A 在1500个产品中任取200个,取法有种,每种取法等可能。200个产品恰有90个次品,取法有种(2)至少
7、有2个次品的概率。记:A表“至少有2个次品”B0表“不含有次品”,B1表“只含有一个次品”,同上,200个产品不含次品,取法有种,200个产品含一个次品,取法有种且B0,B1互不相容。13.九 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?记A表“4只全中至少有两支配成一对”则表“4只人不配对” 从10只中任取4只,取法有种,每种取法等可能。要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有15.十一 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?记Ai表“杯中球的最大个数为i个” i=1,2,3,三只球放入四
8、只杯中,放法有43种,每种放法等可能对A1:必需三球放入三杯中,每杯只放一球。放法432种。(选排列:好比3个球在4个位置做排列)对A2:必需三球放入两杯,一杯装一球,一杯装两球。放法有种。(从3个球中选2个球,选法有,再将此两个球放入一个杯中,选法有4种,最终将剩余的1球放入其余的一个杯中,选法有3种。对A3:必需三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种)16.十二 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?记A表“
9、10个部件中有一个部件强度太弱”。法一:用古典概率作:把随机试验E看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。但10组钉铆完10个部件要分先后次序)对E:铆法有种,每种装法等可能对A:三个次钉必需铆在一个部件上。这种铆法有10种法二:用古典概率作把试验E看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。(铆钉要计先后次序)对E:铆法有种,每种铆法等可能对A:三支次钉必需铆在“1,2,3”位置上或“4,5,6”位置上,或“28,29,30”位置上。这种铆法有种17.十三 已知。解一:留意. 故有P (AB)=P(A)P(A)=0.70.5=0.
10、2。再由加法定理,P (A)= P(A)+ P()P(A)=0.7+0.60.5=0.8于是18.十四 。解:由由乘法公式,得由加法公式,得19.十五 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。解:(方法一)(在缩小的样本空间SB中求P(A|B),即将事务B作为样本空间,求事务A发生的概率)。掷两颗骰子的试验结果为一有序数组(x, y)(x, y=1,2,3,4,5,6)并且满意x,+y=7,则样本空间为S=(x, y)| (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)每种结果(x, y)等可能。A=掷二骰子,点
11、数和为7时,其中有一颗为1点。故方法二:(用公式S=(x, y)| x =1,2,3,4,5,6; y = 1,2,3,4,5,6每种结果均可能A=“掷两颗骰子,x, y中有一个为“1”点”,B=“掷两颗骰子,x,+y=7”。则,故20.十六 据以往资料说明,某一3口之家,患某种传染病的概率有以下规律:P(A)=P孩子得病=0.6,P(B|A)=P母亲得病|孩子得病=0.5,P (C|AB)=P父亲得病|母亲及孩子得病=0.4。求母亲及孩子得病但父亲未得病的概率。解:所求概率为P(AB)(留意:由于“母病”,“孩病”,“父病”都是随机事务,这里不是求P (|AB)P (AB)= P(A)=P(
12、B|A)=0.60.5=0.3, P(|AB)=1P (C |AB)=10.4=0.6.从而P(AB)= P (AB)P(|AB)=0.30.6=0.18.21.十七 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事务的概率。(1)二只都是正品(记为事务A)法一:用组合做 在10只中任取两只来组合,每一个组合看作一个根本结果,每种取法等可能。法二:用排列做 在10只中任取两个来排列,每一个排列看作一个根本结果,每个排列等可能。法三:用事务的运算和概率计算法则来作。记A1,A2分别表第一、二次获得正品。(2)二只都是次品(记为事务B)法一:法二:法三:(3)一
13、只是正品,一只是次品(记为事务C)法一:法二:法三:(4)第二次取出的是次品(记为事务D)法一:因为要留意第一、第二次的依次。不能用组合作,法二:法三:22.十八 某人遗忘了 号码的最终一个数字,因此随机的拨号,求他拨号不超过三次而接通所需的 的概率是多少?假如已知最终一个数字是奇数,那么此概率是多少?记H表拨号不超过三次而能接通。Ai表第i次拨号能接通。留意:第一次拨号不通,第二拨号就不再拨这个号码。假如已知最终一个数字是奇数(记为事务B)问题变为在B已发生的条件下,求H再发生的概率。24.十九 设有甲、乙二袋,甲袋中装有n只白球m只红球,乙袋中装有N只白球M只红球,今从甲袋中任取一球放入乙
14、袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?(此为第三版19题(1))记A1,A2分别表“从甲袋中获得白球,红球放入乙袋”再记B表“再从乙袋中获得白球”。B=A1B+A2B且A1,A2互斥P (B)=P (A1)P(B| A1)+ P (A2)P (B| A2)十九(2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。记C1为“从第一盒子中获得2只红球”。 C2为“从第一盒子中获得2只白球”。 C3为“从第一盒子中获得1只红球,1只白球”,D为“从第二盒子中获得白
15、球”,明显C1,C2,C3两两互斥,C1C2C3=S,由全概率公式,有P(D)=P (C1)P (D|C1)+P (C2)P (D|C2)+P (C3)P (D| C3)26.二十一 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人群中随机地选择一人,恰好是色盲患者,问此人是男性的概率是多少?解:A1=男人,A2=女人,B=色盲,明显A1A2=S,A1 A2=由已知条件知由贝叶斯公式,有二十二 一学生接连参与同一课程的两次考试。第一次及格的概率为P,若第一次及格则第二次及格的概率也为P;若第一次不及格则第二次及格的概率为(1)若至少有一次及格则他能获得某种资格,求
16、他获得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。解:Ai=他第i次及格,i=1,2已知P (A1)=P (A2|A1)=P,(1)B=至少有一次及格所以(2)(*)由乘法公式,有P (A1 A2)= P (A1) P (A2| A1) = P2由全概率公式,有将以上两个结果代入(*)得28.二十五 某人下午5:00下班,他所积累的资料说明:到家时间5:355:395:405:445:455:495:505:54迟于5:54乘地铁到家的概率0.100.250.450.150.05乘汽车到家的概率0.300.350.200.100.05某日他抛一枚硬币确定乘地铁还是乘汽车,
17、结果他是5:47到家的,试求他是乘地铁回家的概率。解:设A=“乘地铁”,B=“乘汽车”,C=“5:455:49到家”,由题意,AB=,AB=S已知:P (A)=0.5, P (C|A)=0.45, P (C|B)=0.2, P (B)=0.5由贝叶斯公式有29.二十四 有两箱同种类型的零件。第一箱装5只,其中10只一等品;第二箱30只,其中18只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。试求(1)第一次取到的零件是一等品的概率。(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。解:设Bi表示“第i次取到一等品”i=1,2Aj表示“第j
18、箱产品”j=1,2,明显A1A2=SA1A2=(1)(B1= A1B +A2B由全概率公式解)。(2) (先用条件概率定义,再求P (B1B2)时,由全概率公式解)312LR32.二十六(2) 如图1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率为p,且设各继电器闭合及否互相独立,求L和R是通路的概率。54记Ai表第i个接点接通记A表从L到R是构成通路的。A=A1A2+ A1A3A5+A4A5+A4A3A2四种状况不互斥P (A)=P (A1A2)+P (A1A3A5) +P (A4A5)+P (A4A3A2)P (A1A2A3A5)+ P (A1A2 A4A5)+ P (A1A
19、2 A3 A4) +P (A1A3 A4A5)+ P (A1A2 A3A4A5) P (A2 A3 A4A5)+ P (A1A2A3 A4A5)+ P (A1A2 A3 A4A5)+(A1A2 A3 A4A5) + P (A1A2 A3 A4A5)P (A1A2A3 A4A5)又由于A1,A2, A3, A4,A5互相独立。故 P (A)=p2+ p3+ p2+ p3p4+p4+p4+p4+p5+p4 + p5+ p5+ p5+ p5p5=2 p2+3p35p4+2 p5二十六(1)设有4个独立工作的元件1,2,3,4。它们的牢靠性分别为P1,P2,P3,P4,将它们按图(1)的方式联接,求系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 第四 习题 答案 浙江大学
限制150内