北师大版小学数学总复习资料.docx
《北师大版小学数学总复习资料.docx》由会员分享,可在线阅读,更多相关《北师大版小学数学总复习资料.docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学数学总复习资料书目数和数的运算2一、概念2二、方法5三、性质和规律7四、运算的意义8五、应用11度量衡19一、长度19二、面积20三、体积和容积20四、质量21五、时间21六、货币21代数初步学问22一、用字母表示数22二、简易方程24三、解方程24四、列方程解应用题24五、比和比例25几何的初步学问26一、线和角26二、平面图形27三、立体图形30简洁的统计31一、统计表31二、统计图32数和数的运算一、概念(一)整数1整数的意义自然数和0都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一(个)、十、百、千、
2、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位计数单位依据肯定的依次排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。假如数a能被数b(b0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。倍数和因数是互相依存的。因为35能被7整除,所以35是7的倍数,7是35的因数。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。一个数的倍数的个数是无限的,
3、其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不肯定能被9整除,但是能被9整除的数肯定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都
4、能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。一个数,假如只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,假如除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、
5、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。假如把自然数按其因数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数:28=227几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。公因数只有1的两个数
6、,叫做互质数,成互质关系的两个数,有下列几种状况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公因数只有1时,这两个合数互质,假如几个数中随意两个都互质,就说这几个数两两互质。假如较小数是较大数的因数,那么较小数就是这两个数的最大公因数。假如两个数是互质数,它们的最大公因数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的公倍数,6是它们的最小公倍数。假如较大
7、数是较小数的倍数,那么较大数就是这两个数的最小公倍数。假如两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把整数1平均分成10份、100份、1000份得到的非常之几、百分之几、千分之几可以用小数表示。一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几一个小数由整数局部、小数局部和小数点局部组成。数中的圆点叫做小数点,小数点左边的数叫做整数局部,小数点左边的数叫做整数局部,小数点右边的数叫做小数局部。在小数里,每相邻两个计数单位之间的进率都是10。小数局部的最高分数单位”非常之一”和整数局部的
8、最低单位”一”之间的进率也是10。2小数的分类纯小数:整数局部是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数局部不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数局部的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数局部的数位是无限的小数,叫做无限小数。例如:4.333.1415926无限不循环小数:一个数的小数局部,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.03331
9、2.109109一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是”9”,0.5454的循环节是”54”。纯循环小数:循环节从小数局部第一位开场的,叫做纯循环小数。例如:3.1110.5656混循环小数:循环节不是从小数局部第一位开场的,叫做混循环小数。3.12220.03333写循环小数的时候,为了简便,小数的循环局部只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。假如循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。(三)分数1分数的意义把单位”1”平均分成若干份,表示这样的一份或者几份
10、的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位”1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位”1”平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数及真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比拟小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示
11、一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。二、方法(一)数的读法和写法1整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先依据个级的读法去读,再在后面加一个”亿”或”万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3小数的读法:读小数的时候,整数局部依据整数的读法读,小数点读作”点”,小数局部从左向右顺次读出每一位数位上的数字。4小数的写法:写小数的时候,整数局部依据整数的写法来写,小数点写在个位右下角,
12、小数局部顺次写出每一个数位上的数字。5分数的读法:读分数时,先读分母再读”分之”然后读分子,分子和分母依据整数的读法来读。6分数的写法:先写分数线,再写分母,最终写分子,依据整数的写法来写。7百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时依据整数的读法来读。8百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号”%”来表示。(二)数的改写一个较大的多位数,为了读写便利,经常把它改写成用”万”或”亿”作单位的数。有时还可以依据须要,省略这个数某一位后面的数,写成近似数。1精确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数
13、是原数的精确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2近似数:依据实际须要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;假如尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4大小比拟比拟整数大小:比拟整数的大小,位数多的那个数就大,假如位数一样,就看最高位,最高位上的数大,那
14、个数就大;最高位上的数一样,就看下一位,哪一位上的数大那个数就大。比拟小数的大小:先看它们的整数局部,整数局部大的那个数就大;整数局部一样的,非常位上的数大的那个数就大;非常位上的数也一样的,百分位上的数大的那个数就大比拟分数的大小:分母一样的分数,分子大的分数比拟大;分子一样的数,分母小的分数大。分数的分母和分子都不一样的,先通分,再比拟两个数的大小。(三)数的互化1小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3一个最简分数,
15、假如分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;假如分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4小数化成百分数:只要把小数点向右挪动两位,同时在后面添上百分号。5百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左挪动两位。6分数化成百分数:通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数。7百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,始终除到商是质数为止,再把除数和商写成连乘的形式。2求几个数的最大公因数的方法是:先
16、用这几个数的公因数连续去除,始终除到所得的商只有公因数1为止,然后把全部的除数连乘求积,这个积就是这几个数的的最大公因数。3求几个数的最小公倍数的方法是:先用这几个数(或其中的局部数)的公因数去除,始终除到互质(或两两互质)为止,然后把全部的除数和商连乘求积,这个积就是这几个数的最小公倍数。4成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,
17、然后把各分数化成用这个最小公倍数作分母的分数。三、性质和规律(一)商不变的性质商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小一样的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的挪动引起小数大小的变更1小数点向右挪动一位,就扩大到原来的10倍;小数点向右挪动两位,就扩大到原来的100倍;小数点向右挪动三位,就扩大到原来的1000倍2小数点向左挪动一位,就缩小到原来的;小数点向左挪动两位,就缩小到原来的;小数点向左挪动三位,就缩小到原来的3小数点向左移或者向右移位数不够时,要用”0”补足位。(四)分数的根本性质分数的根本性质:分数的
18、分子和分母都乘以或者除以一样的数(零除外),分数的大小不变。(五)分数及除法的关系1被除数除数=被除数/除数2因为零不能作除数,所以分数的分母不能为零。3被除数相当于分子,除数相当于分母。四、运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是局部数,和是总数。加数+加数=和加数=和另一个加数2整数减法:已知两个加数的和及其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是局部数。加法和减法互为逆运算。被减数-减数=差被减数=差+减数
19、减数=被减数-差3整数乘法:求几个一样加数的和的简便运算叫做乘法。在乘法里,一样的加数和一样加数的个数都叫做因数。一样加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。因数因数=积因数=积另一个因数4整数除法:已知两个因数的积及其中一个因数,求另一个因数的运算叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。被除数除数=商除数=被除数商被除数=商除数(二)小数四则运算1小数加法:小数加法的意义及整数加法的意义一样。是把两个数
20、合并成一个数的运算。2小数减法:小数减法的意义及整数减法的意义一样。已知两个加数的和及其中的一个加数,求另一个加数的运算.3小数乘法:小数乘整数的意义和整数乘法的意义一样,就是求几个一样加数和的简便运算;一个数乘纯小数的意义是求这个数的非常之几、百分之几、千分之几是多少。4小数除法:小数除法的意义及整数除法的意义一样,就是已知两个因数的积及其中一个因数,求另一个因数的运算。5乘方(平方):求几个一样因数的积的运算叫做乘方。例如33=33=32(三)分数四则运算1分数加法:分数加法的意义及整数加法的意义一样。是把两个数合并成一个数的运算。2分数减法:分数减法的意义及整数减法的意义一样。已知两个加
21、数的和及其中的一个加数,求另一个加数的运算。3分数乘法:分数乘法的意义及整数乘法的意义一样,就是求几个一样加数和的简便运算。4乘积是1的两个数叫做互为倒数。5分数除法:分数除法的意义及整数除法的意义一样。就是已知两个因数的积及其中一个因数,求另一个因数的运算。(四)运算定律1加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变,即(a+b)+c=a+(b+c)。3乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。4乘法结合律:三个数相乘,先把前两个
22、数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc)。5乘法安排律:两个数的和及一个数相乘,可以把两个加数分别及这个数相乘再把两个积相加,即(a+b)c=ac+bc。6减法的性质:从一个数里连续减去几个数,可以从这个数里减去全部减数的和,差不变,即a-b-c=a-(b+c)。(五)运算法则1整数加法计算法则:一样数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2整数减法计算法则:一样数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3整数乘法计算法则:先用一个因数每一位上的数分别去乘另一
23、个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;假如不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。假如哪一位上不够商1,要补”0”占位。每次除得的余数要小于除数。5.小数乘法法则:先依据整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;假如位数不够,就用”0”补足。6除数是整数的小数除法计算法则:先依据整数除法的法则去除,商的小数点要和被除数的小数点对齐;假如除到被除数的末尾仍有余数,就在余数后面添”0”,再接着除。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 小学 数学 复习资料
限制150内