必修二第三章直线与方程知识点总结及练习答案.docx
《必修二第三章直线与方程知识点总结及练习答案.docx》由会员分享,可在线阅读,更多相关《必修二第三章直线与方程知识点总结及练习答案.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、必修二 第三章 直线及方程(1)直线的倾斜角定义:x轴正向及直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线及x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线及轴的倾斜程度。当直线l及x轴平行或重合时, =0, k = tan0=0;当直线l及x轴垂直时, = 90, k 不存在.当时,; 当时,; 当时,不存在。过两点的直线的斜率公式: ( P1(x1,y1),P2(x2,y2),x1x2)留意下面四点:(1)当时,公式右边无意义,直线的斜率
2、不存在,倾斜角为90;(2)k及P1、P2的依次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线及轴交于点,及轴交于点,即及轴、轴的截距分别为。一般式:(A,B不全为0)留意:各式的适用范围 特殊的方程如:平行于x轴的直线:(
3、b为常数); 平行于y轴的直线:(a为常数); (6)两直线平行及垂直当,时,留意:利用斜率推断直线的平行及垂直时,要留意斜率的存在及否。(7)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有多数解及重合(8)两点间间隔 公式:设是平面直角坐标系中的两个点,则 (9)点到直线间隔 公式:一点到直线的间隔 (10)两平行直线间隔 公式已知两条平行线直线和的一般式方程为:,:,则及的间隔 为直线的方程1. 设a,b,c是互不相等的三个实数,假如A(a,a3)、B(b,b3)、C(c,c3)在同始终线上,求证:a+b+c=0.证明 A、B、C三点共线,kAB=kAC,化简得a2
4、+ab+b2=a2+ac+c2,b2-c2+ab-ac=0,(b-c)(a+b+c)=0,a、b、c互不相等,b-c0,a+b+c=0.2.若实数x,y满意等式(x-2)2+y2=3,那么的最大值为( )A. B.C. D.答案D3.求经过点A(-5,2)且在x轴上的截距等于在y轴上的截距的2倍的直线方程; 解 当直线l在x、y轴上的截距都为零时,设所求的直线方程为y=kx,将(-5,2)代入y=kx中,得k=-,此时,直线方程为y=-x, 即2x+5y=0.当横截距、纵截距都不是零时,设所求直线方程为=1,将(-5,2)代入所设方程,解得a=-,此时,直线方程为x+2y+1=0.综上所述,所
5、求直线方程为x+2y+1=0或2x+5y=0.4.直线l经过点P(3,2)且及x,y轴的正半轴分别交于A、B两点,OAB的面积为12,求直线l的方程. 解 方法一 设直线l的方程为(a0,b0),A(a,0),B(0,b),解得所求的直线方程为=1,即2x+3y-12=0.方法二 设直线l的方程为y-2=k(x-3),令y=0,得直线l在x轴上的截距a=3-,令x=0,得直线l在y轴上的截距b=2-3k.(2-3k)=24.解得k=-.所求直线方程为y-2=-(x-3).即2x+3y-12=0.9.已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0及线段PQ有交
6、点,求m的取值范围. 解 方法一 直线x+my+m=0恒过A(0,-1)点.kAP=-2,kAQ=,则-或-2,-m且m0.又m=0时直线x+my+m=0及线段PQ有交点,所求m的取值范围是-m.方法二 过P、Q两点的直线方程为y-1=(x+1),即y=x+,代入x+my+m=0,整理,得x=-. 由已知-1-2, 解得-m.两直线方程例1 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试推断l1及l2是否平行;(2)l1l2时,求a的值.解 (1)方法一 当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=-3,l2:
7、x-y-1=0,l1不平行于l2;当a1且a0时,两直线可化为l1:y=-3,l2:y=-(a+1),l1l2,解得a=-1, 综上可知,a=-1时,l1l2,否则l1及l2不平行. 方法二 由A1B2-A2B1=0,得a(a-1)-12=0,由A1C2-A2C10,得a(a2-1)-160,l1l2a=-1,故当a=-1时,l1l2,否则l1及l2不平行.(2)方法一 当a=1时,l1:x+2y+6=0,l2:x=0,l1及l2不垂直,故a=1不成立.当a1时,l1:y=-x-3,l2:y=-(a+1),由=-1a=.方法二 由A1A2+B1B2=0,得a+2(a-1)=0a=.例3 已知直
8、线l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.解 方法一 若直线l的斜率不存在,则直线l的方程为x=3,此时及l1,l2的交点分别是A(3,-4),B(3,-9),截得的线段长|AB|=|-4+9|=5,符合题意.若直线l的斜率存在时,则设直线l的方程为y=k(x-3)+1,分别及直线l1,l2的方程联立,由,解得A.8分由,解得B, 由两点间的间隔 公式,得+=25,解得k=0,即所求直线方程为y=1. 综上可知,直线l的方程为x=3或y=1. 方法二 设直线l及l1,l2分别相交于A(x1,y1),B(x2,y2),则x1+y1
9、+1=0,x2+y2+6=0,两式相减,得(x1-x2)+(y1-y2)=5 6分又(x1-x2)2+(y1-y2)2=25联立可得或, 10分由上可知,直线l的倾斜角分别为0和90,故所求的直线方程为x=3或y=1.例4 求直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程.解 方法一 由 知直线l1及l的交点坐标为(-2,-1),设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1、l2的间隔 相等,由点到直线的间隔 公式得解得k=(k=2舍去),直线l2的方程为x-2y=0.方法二 设所求直线上一点P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 第三 直线 方程 知识点 总结 练习 答案
限制150内