初中代数知识点归纳.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初中代数知识点归纳.docx》由会员分享,可在线阅读,更多相关《初中代数知识点归纳.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、代数局部第一章:实数根底学问点:一、实数的分类:1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定构造的不限环无限小数,如1.1001;特定意义的数,如、等。3、推断一个实数的数性不能仅凭外表上的感觉,往往要经过整理化简后才下结论。二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。(1)实数a的相反数是 -a; (2)a和b互为相反数a+b=02、倒数:(1)实数a(a0)的倒数是;(2)a和b 互为倒数;(3)留意0没有倒数3、肯定值:(1)一个数a 的肯定值有以下三种状况:
2、(2)实数的肯定值是一个非负数,从数轴上看,一个实数的肯定值,就是数轴上表示这个数的点到原点的间隔 。(3)去掉肯定值符号(化简)必需要对肯定值符号里面的实数进展数性(正、负)确认,再去掉肯定值符号。4、n次方根(1)平方根,算术平方根:设a0,称叫a的平方根,叫a的算术平方根。(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。(3)立方根:叫实数a的立方根。(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。三、实数及数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。 原点、正方向、单位长度是数轴的三要素。2、 数轴上的点和实数的对应关系
3、:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比拟1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于0; 负数小于0; 正数大于一切负数;两个负数肯定值大的反而小。五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的肯定值相加;(2)异号两数相加,取肯定值大的加数的符号,并用较大的肯定值减去较小的肯定值。可运用加法交换律、结合律。2、减法: 减去一个数等于加上这个数的相反数。3、乘法:(1)两数相乘,同号取正,异号取负,并把肯定值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非
4、0的实数相乘,积的符号由负因数的个数确定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可运用乘法交换律: 乘法结合律: 乘法安排律:4、除法:(1)两数相除,同号得正,异号得负,并把肯定值相除。(2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。5、乘方及开方:乘方及开方互为逆运算。6、实数的运算依次:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,假如没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要留意先定符号后运算。六、有效数字和科学记数法1、科
5、学记数法:设N0,则N= a(其中1a10,n为整数)。2、 有效数字:一个近似数,从左边第一个不是0的数,到准确到的数位为止,全部的数字,叫做这个数的有效数字。准确度的形式有两种:(1)准确到那一位;(2)保存几个有效数字。代数局部第二章:代数式根底学问点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。3、代数式的分类:二、整式的有关概念和运算1、概念(1)单项式:像x、7、,这种数及字母的积叫做单项式。 单独一个数或字母也是单项式。单项式的次数:一个单项式
6、中,全部字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。(2)多项式:几个单项式的和叫做多项式。多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的依次排列起来,叫做把多项式按这个字母升(降)幂排列。(3) 同类项:所含字母一样,并且一样字母的指数也分别一样的项叫做同类项。2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。去括号法则:
7、括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“”号,把括号和它前面的“”号去掉,括号里的各项都变号。添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“”号,括到括号里的各项都变号。整式的加减事实上就是合并同类项,在运算时,假如遇到括号,先去括号,再合并同类项。 (2)整式的乘除: 幂的运算法则:其中m、n都是正整数同底数幂相乘:;同底数幂相除:;幂的乘方:积的乘方:。单项式乘以单项式:用它们系数的积作为积的系数,对于一样的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。单项式乘以多项式
8、:就是用单项式去乘多项式的每一项,再把所得的积相加。多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式: 平方差公式:;完全平方公式:,三、因式分解1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。 2、常用的因式分解方法: (1)提取公因式法: (2)运用公式法:平方差公式:;完全平方公式:(3) 十字相乘法:(4) 分组分解法:将多项式的项适当分组后能
9、提公因式或运用公式分解。(5)运用求根公式法:若的两个根是、,则有:3、因式分解的一般步骤:(1)假如多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。(4)最终考虑用分组分解法。四、分式 1、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。(1)分式无意义:B=0时,分式无意义; B0时,分式有意义。(2)分式的值为0:A=0,B0时,分式的值等于0。(3)分式的约分:把一个分式的分子及分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。
10、(4)最简分式:一个分式的分子及分母没有公因式时,叫做最简分式。分式运算的最终结果若是分式,肯定要化为最简分式。(5)通分:把几个异分母的分式分别化成及原来分式相等的同分母分式的过程,叫做分式的通分。(6)最简公分母:各分式的分母全部因式的最高次幂的积。(7)有理式:整式和分式统称有理式。 2、分式的根本性质:(1) (2)(3)分式的变号法则:分式的分子,分母及分式本身的符号,变更其中任何两个,分式的值不变。 3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘
11、以分子,分母乘以分母。(3)除:除以一个分式等于乘上它的倒数式。(4)乘方:分式的乘方就是把分子、分母分别乘方。五、二次根式 1、二次根式的概念:式子叫做二次根式。(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。(2)同类二次根式:化为最简二次根式之后,被开方数一样的二次根式,叫做同类二次根式。(3)分母有理化:把分母中的根号化去叫做分母有理化。(4)有理化因式:把两个含有二次根式的代数式相乘,假如它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:及;及) 2、二次根式的性质: (1) ;(3)(a0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 代数 知识点 归纳
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内