中考数学压轴题(17页).doc
《中考数学压轴题(17页).doc》由会员分享,可在线阅读,更多相关《中考数学压轴题(17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-中考数学压轴题-第 17 页中考数学压轴题一.因动点产生的等腰三角形问题例1:(2012德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BEDB交x轴于点E(1)求经过点D、B、E的抛物线的解析式;(2)将DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标例2:201
2、2年扬州市中考第27题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 例3:2012年临沂市中考第26题如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?
3、若存在,求点P的坐标;若不存在,请说明理由图1二.因动点产生的直角三角形问题例1 :(2011德阳)(本小题满分14分)如图,已知抛物线经过原点O,与轴交于另一点A,它的对称轴与轴交于点C,直线经过抛物线上一点B(),且与轴、直线分别交于点D,E(1) 求抛物线对应的函数解析式并用配方法把这个解析式化成的形式;(2) 求证:CDBE;(3) 在对称轴上是否存在点P,使PBE是直角三角形,如果存在,请求出点P的坐标,并求出PAB的面积;如果不存在,请说明理由。例2 :2013年山西省中考第26题如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为
4、对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、B、C的坐标;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;(3)当点P在线段EB上运动时,是否存在点Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由图1 例3:2012年广州市中考第24题如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的
5、面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式图1 三因动点产生的平行四边形问题例1:2013年上海市松江区中考模拟第24题如图1,已知抛物线yx2bxc经过A(0, 1)、B(4, 3)两点 (1)求抛物线的解析式;(2)求tanABO的值;(3)过点B作BCx轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标图1 例2:2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1
6、, 0)、C(3, 0)、D(3, 4)以A为顶点的抛物线yax2bxc过点C动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动点P、Q的运动速度均为每秒1个单位,运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值图1例3:2011年上海市中考第24题已知平面直角坐标系xOy(如图1),一次函数的
7、图象与y轴交于点A,点M在正比例函数的图象上,且MOMA二次函数yx2bxc的图象经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标图1例4: 2009年江西省中考第24题如图1,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的
8、长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系图1中考数学压轴题(解析)一 因动点产生的等腰三角形问题例1:(2012德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BEDB交x轴于点E(1)求经过点D、B、E的抛物线的解析式;(2)将DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线
9、在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标思路点拨(1)本题关键是求得E点坐标,然后利用待定系数法求抛物线解析式如题图,可以证明BCDBAE,则AE=CD,从而得到E点坐标;(2)首先求出M点坐标,然后利用待定系数法求直线MB的解析式,令x=0,求得G点坐标,进而得到线段CG、DG的长度;由BCGBAF,可得AF=CG,从而求得OF的长度比较OF与DG的长度,它们满足OF=DG的关系,所以结论成立(3)本问关键在于分类讨论PFE为等腰三角形,如解答图所示,可能有三种情况,需逐一讨论并求解满分解答解:(1)BEDB交x轴于点E,OABC是正方形,DBC=EBA在BCD与BAE中
10、,BCDBAE,AE=CDOABC是正方形,OA=4,D是OC的中点,A(4,0),B(4,4),C(0,4),D(0,2),E(6,0)设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有:解得,经过点D、B、E的抛物线的解析式为:y=x2+x+2(2)结论OF=DG能成立理由如下:由题意,当DBE绕点B旋转一定的角度后,同理可证得BCGBAF,AF=CGxM=,yM=xM2+xM+2=,M(,)设直线MB的解析式为yMB=kx+b,M(,),B(4,4),解得,yMB=x+6,G(0,6),CG=2,DG=4AF=CG=2,OF=OAAF=2,F(2,0
11、)OF=2,DG=4,结论OF=DG成立(3)如图,PFE为等腰三角形,可能有三种情况,分类讨论如下:若PF=FEFE=4,BC与OA平行线之间距离为4,此时P点位于射线CB上,F(2,0),xQ=2,yQ=xQ2+xQ+2=,Q1(2,);若PF=PE如图所示,AF=AE=2,BAFE,BEF为等腰三角形,此时点P、Q与点B重合,Q2(4,4);若PE=EFFE=4,BC与OA平行线之间距离为4,此时P点位于射线CB上,E(6,0),P(6,4)设直线yPF的解析式为yPF=kx+b,F(2,0),P(6,4),解得,yPF=x2Q点既在直线PF上,也在抛物线上,x2+x+2=x2,化简得5
12、x214x48=0,解得x1=,x2=2(不合题意,舍去)xQ=2,yQ=xQ2=2=Q3(,)综上所述,Q点的坐标为Q1(2,)或Q2(4,4)或Q3(,)例2:2012年扬州市中考第27题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 思路点拨1第(2)题是典型的“牛喝水”问题,点P在线段BC上时PAC的周长最小2第(3
13、)题分三种情况列方程讨论等腰三角形的存在性满分解答(1)因为抛物线与x轴交于A(1,0)、B(3, 0)两点,设ya(x1)(x3),代入点C(0 ,3),得3a3解得a1所以抛物线的函数关系式是y(x1)(x3)x22x3(2)如图2,抛物线的对称轴是直线x1当点P落在线段BC上时,PAPC最小,PAC的周长最小设抛物线的对称轴与x轴的交点为H由,BOCO,得PHBH2所以点P的坐标为(1, 2)图2(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0)考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m)在MAC中,AC210,MC21(m3)2,MA24m2如图3,当MA
14、MC时,MA2MC2解方程4m21(m3)2,得m1此时点M的坐标为(1, 1)如图4,当AMAC时,AM2AC2解方程4m210,得此时点M的坐标为(1,)或(1,)如图5,当CMCA时,CM2CA2解方程1(m3)210,得m0或6当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0)图3 图4 图5例3:2012年临沂市中考第26题如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点
15、P的坐标;若不存在,请说明理由图1思路点拨1用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验2本题中等腰三角形的角度特殊,三种情况的点P重合在一起满分解答(1)如图2,过点B作BCy轴,垂足为C在RtOBC中,BOC30,OB4,所以BC2,所以点B的坐标为(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为yax(x4),代入点B,解得所以抛物线的解析式为(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线(如图2)当BPBO4时,BP216所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 17
限制150内