《中考圆知识点总结复习(10页).doc》由会员分享,可在线阅读,更多相关《中考圆知识点总结复习(10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-中考圆知识点总结复习-第 10 页初中圆复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:
2、平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)
3、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角2、圆周角定理的推论:推论1:同弧
4、或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注意:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边是内接四边形九、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过
5、半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 ;平分十一、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点,推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例
6、中项。即:在中,直径,2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。即:在中,、是割线十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 十四、圆内正多边形的计算(1)正三角形 在中是正三角形,有关计算在中进行:;(2)正四边形同理,四边形
7、的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: (1)圆柱侧面展开图(2)圆柱的体积:3、圆锥侧面展开图(1)=(2)圆锥的体积:十六、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。(2)ABC中,C=90,AC=b,BC=a,AB=c,则内切圆的半径r= 。 B OA D(3)SABC=,其中a,b,c是边长,r是内切圆的半径。(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,
8、另一边是圆的弦。 如图,BC切O于点B,AB为弦,ABC叫弦切角,ABC=D。 C练习题1若O的半径为4cm,点A到圆心O的距离为3cm,那么点A与O的位置关系是( )A点A在圆内 B点A在圆上 c点A在圆外 D不能确定2已知O的半径为5,弦AB的弦心距为3,则AB的长是 3如图,MN是半径为1的O的直径,点A在O上,AMN=30,B为AN弧的中点,点P是直径MN上一个动点,则求PA+PB的最小值_N_M_B_A_P_O4如图2,已知BD是O的直径,O的弦ACBD于点E,若AOD=60,则DBC的度数为 5与直线L相切于已知点的圆的圆心的轨迹是_6已知直角三角形的两直角边长分别为5和12,则它
9、的外接圆半径R=_,内切圆半径r=_7O的半径为6,O的一条弦AB为6,以3为半径的同心圆与直线AB的位置关系是 8PA、 PB是O的切线,切点是A 、B,APB=50,过A作O直径AC,连接CB,则PBC=_9如图4,AB是O的直径,弦AC、BD相交于P,则CDAB等于AsinBPCBcosBPCCtanBPCDcotBPC图4 图510如图5,点P为弦AB上一点,连结OP,过PC作PCOP,PC交O于C,若AP=4, PB=2,则PC的长是AB2C2D311圆的最大的弦长为12 cm,如果直线与圆相交,且直线与圆心的距离为d,那么Ad6 cmB6 cmd12 cm12如图6,在以O为圆心的
10、两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_ 图6 图7 13如图7,PE是O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,ACDB=12,则PA=_14如图8,AB是O的直径,点D在AB的延长线上,且BD=OB,点C在O上,CAB=30,求证:DC是O的切线 图815.如图,AB既是C的切线也是D的切线,C与D相外切,C的半径r=2,D的半径R=6,求四边形ABCD的面积。16如图10,BC是O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:(1) AC是O的切线(2)若ADDB=32,AC=15,求O的直径(12分)
11、图1017如图11,AB是O的直径,点P在BA的延长线上,弦CDAB,垂足为E,且PC2=PEPO(1)求证:PC是O的切线;(2)若OEEA=12, PA=6,求O的半径;(3)求sinPCA的值(12分) 图1118如图,O的两条割线AB、AC分别交圆O于 D、B、E、C,弦DF/AC交 BC于C (1)求证:;(2)若CFAE求证:ABC为等腰三角形19.如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C, (1)求证:CBPD;(2)若BC=3,sinP=,求O的直径。20如图,ABC内接于O,AB是O的直径,PA是过A点的直线,PACB (l)求证:PA是O的切线;(2)如果
12、弦CD交AB于E,CD的延长线交PA于F,AC8,CE:ED6:5,AE:EB2:3,求AB的长和ECB的正切值 21如图,在RtABC中,B90,A的平分线交BC于点D,E为AB上的一点,DEDC,以D为圆心,DB长为半径作D,求证:(l)AC是D的切线;(2)ABEBAC22如图,AB是O的直径,以OA为直径的;与O的弦AC相交于D, DEOC,垂足为E (l)求证: ADDC; (2)求证: DE是的切线;(3)如果OEEC,请判断四边形OED是什么四边形,并证明你的结论考点一:与圆相关概念的应用利用与圆相关的概念来解决一些问题是必考的内容,在复习中准确理解与圆有关的概念,注意分清它们之
13、间的区别和联系.1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题【例1】 已知:如图所示,在ABO中,AOB=90,B=25,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.【例2】 如图,A、B、C是O上的三点,AOC=100,则ABC的度数为( ). . 30. 45 . 50. 60 2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系【例3】 已知O的半径为3cm,A为线段OM的中点,当OA满足: (1)当OA=1cm时,点M与O的位置关系是 . (2)当OA=1.5cm时,点M与O的位置关系是 . (3)当OA=3cm时,点M与O的位置关系是 .【例4】
14、O的半径为4,圆心O到直线l的距离为3,则直线l与O的位置关系是( ). . 相交. 相切. 相离. 无法确定【例5】 两圆的半径分别为3cm和4cm,圆心距为2cm,那么两圆的位置关系是_.【例6】 已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.【例7】 如图,矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点E,则阴影部分的面积为 (结果保留).【例8】 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是 .考点二:圆中计算与证明的常见类型 垂径定理及其推论中的三要素是:直径、平分、过圆心,它们在圆内常常构成圆周角、等分线段、直角三角形
15、等,从而可以应用相关定理完成其论证或计算.【例1】 在O中,弦CD与直径AB相交于点P,夹角为30,且分直径为15两部分,AB=6,则弦CD的长为 . . 2. 4. 4. 2“直径所对的圆周角是直角”解题 “直径所对的圆周角是直角”是非常重要的定理,在解与圆有关的问题时,常常添加辅助线构成直径所对的圆周角,以便利用上面的定理.【例2】 如图,在O的内接ABC中,CD是AB边上的高,求证:ACD=OCB. 圆内接四边形的对角互补,这是圆内接四边形的重要性质,也揭示了确定四点共圆的方法.【例3】 如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若C45,AB,则点B到AE的距离为_.4
16、. 判断圆的切线的方法及应用 判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线. 【例4】 如图,O的直径AB=4,ABC=30,BC=,D是线段BC的中点. (1)试判断点D与O的位置关系,并说明理由. (2)过点D作DEAC,垂足为点E,求证:直线DE是O的切线. 【例5】 如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的O与BC相切于M,与AB、AD分别相交于E、F,求证CD与O相切. 【例6】 如图,半圆O为ABC的外接半圆,AC为
17、直径,D为劣弧上一动点,P在CB的延长线上,且有BAP=BDA.求证:AP是半圆O的切线.【课堂巩固练习】一. 选择题:1. O的半径为R,点P到圆心O的距离为d,并且dR,则P点O外O外或圆周上2. 由一已知点P到圆上各点的最大距离为5,最小距离为1,则圆的半径为 A、2或3 B、3 C、4 D、2 或43.如图,O中,ABDC是圆内接四边形,BOC=110,则BDC的度数是O中,弦AB垂直并且平分一条半径,则劣弧AB的度数等于O的半径,则直线与O的位置关系是、相离、相切、相切或相交、相交6、如图,切O于,交O于点、,若PA5,PBB,则的长是、10、5、 、7如图,某城市公园的雕塑是由3个
18、直径为1m的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为A B. C. D. 8、已知两圆的圆心距是9,两圆的半径是方程2x217x+35=0的两根,则两圆有条切线。A、 1条 B、2条 C、3条 D、4条9、如果等腰梯形有一个内切圆并且它的中位线等于20cm,则梯形的腰长为、 、 、 、10、如图,O1和O2相交于A、B两点,且A O1、A O2分别是两圆的切线,A是切点,若O1的半径r=3,O2的半径R=4,则公共弦AB的长为11、水平放置的排水管(圆柱体)截面半径是1cm,水面宽也是1cm,则截面有水部分(弓形)的面积是A、 B、 C、 D、 或 二. 填空题:,则此圆的直径
19、为 。 O中,AB是直径,弦CD与AB相交于点E,若 ,则CE=DE(只需填一个适合的条件)。14.在圆内接四边形ABCD中,ABC=521,则D= 。15.若三角形的外心在它的一条边上,那么这个三角形是 。16.如图,圆内接四边形ABCD的对角线AC,BD交于E点,AB=120,CD=70则AEB= 。 17已知两个圆的半径分别为8 cm和3 cm,两个圆的圆心距为7 cm,则这两个圆的外公切线长为 。18.如图,O中,弦AB弦CD于E,OFAB于F,OGCD于G,若AE=8cm,EB=4cm,则OG= cm。19. 已知圆锥的母线长为5厘米,底面半径为3厘米,则它的侧面积为 。ABC中,C=90,点O为AB上一点,以O为圆心的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长。O中,C为ACB的中点,CD为直径,弦AB交CD于点P,又PECB于E,若BC=10,且CEEB=32,求AB的长 22.已知:如图,A是以EF为直径的半圆上的一点,作AGEF交EF于G,又B为AG上一点,EB的延长线交半圆于点K,求证:23.已知:如图,ABC内接于O,AE是O的直径,CD是ABC中AB边上的高,求证:ACBC=AECD
限制150内