压力传感器调理电路的设计(31页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《压力传感器调理电路的设计(31页).doc》由会员分享,可在线阅读,更多相关《压力传感器调理电路的设计(31页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 天 津 大 学毕业设计(论文)题目:压力传感器信号调理电路的设计学 院 电气与自动化工程学院 专 业 电气自动化技术 学生姓名 汪文腾 学生学号 4009203024 指导教师 陈曦 提交日期 2012年 6月 2日 -第 27 页-摘 要 随着微电子工业的迅速发展,压力传感器广泛的应用于我们的日常生活中,为了使同学们对压力传感器有较深入的理解。经过综合的解析选择了由实际中的应用作为研究项目,本文通过介绍一种基于压力传感器实现的实际电路搭建的设计方法,该控制器以压力传感器为核心,通过具备运放来实现放大电路等功能。 另外,使用运放的压力传感器再实际电路搭建中被广泛应用。通过对模型的设计可以非
2、常好的延伸到具体的应用案例中。关键词:压力传感器;运放;电路;目 录第一章 绪论11.1器械基本组成及制作工艺11.2压力传感器31.2.1压力传感器的原理31.3通过运放实现的放大电路的压力传感器41.3.1三运放差分放大电路41.3.2 UA741运放型号的介绍51.3.3运算放大器在实际中的应用5第二章 电路仿真62.1 EWB简介62.2 EWB5.0的基本功能62.2.1建立电路原理图方便快捷62.2.2用虚拟仪器仪表测试电路性能参数及波形准确直观62.3实际电路的搭建流程72.4实际电路在EWB上的波形图11第三章 实际电路的搭建213.1实际实验电路的搭建21第四章 误差分析24
3、4.1误差分析24第五章 总结与展望245.1总结245.2展望25致 谢26参考文献27第一章 绪论传感器是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需外加辅助电源。制造压力传感器的基本原理是利用硅晶体的压阻效应。单晶硅材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。压力传感器所用的元件材料是具有压阻效应的单晶硅、扩散掺杂硅和多晶硅。根据晶体不受定向应力时,电导率是同性的,只有受定向应力时才表现出各向异性,由于应力能引起能带的变化,能谷能量,导致电阻
4、率的变化,于是就有电阻的变化,从而产生压阻效应。单晶硅效应包括n型和p型硅压阻效应。选用扩散硅目的在于在设计制造压力传感器时可根据不同温度下硅扩散层的压阻特性选择合适的扩散条件,力求使压力传感器具有良好的性能。多晶硅在传感器中有广泛的用途,可作为微结构和填充材料、敏感材料。压力传感器按用途分类主要是压力监视、压力测量和压力控制及转换成其他量的测量。按供电方式分为压阻型和压电型传感器,前者是被动供电的,需要有外电源。后者是传感器自身产生电荷,不需要外加电源,根据不同领域对压力测量的精度不同分为低精度和高精度的压力传感器。1压力传感压器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件
5、为主,以弹性元件的形变指示力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS 技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。高温压力传感器是为了解决在高温环境下对各种气体、液体的压力进行测量。主要用于测量锅炉、管道、高温反应容器内的压力、井下压力和各种发动机腔体内的压力、高温油品液位与检测、油井测压等领域。目前,研究比较多的高温压力传感器主要有 , Poly2Si 等半导体传感器,还有溅射合金薄膜高温压力传感器、高温光纤压力传感器和高温电容式压力传感器等。半导体电容
6、式压力传感器相比压阻式压力传感器其灵敏度高、温度稳定性好、功耗小,且只对压力敏感,对应力不敏感,因此,电容式压力传感器在许多领域得到广泛应用。1.1器械基本组成及制作工艺硅电容式压力传感器的敏感元件是半导体薄膜,它可以由单晶硅、多晶硅等利用半导体工艺制作而成。典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。由于高温压力传感器工作在高温环境下,补偿电路会受到环境温度的影响,从
7、而产生较大的误差。基于模型识别的高温压力传感器,正是为了避免补偿电路在高温环境下工作产生较大误差而设计的,其设计方案是把传感器件与放大电路分离,通过模型识别来得到所测环境的压力。高温工作区温度可达350 。传感器件由铂电阻和电容式压力传感器构成。其MEMS 工艺如下:高温压力传感器由硅膜片、衬底、下电极和绝缘层构成。其中下电极位于厚支撑的衬底上。电极上蒸镀一层绝缘层。硅膜片则是利用各向异性腐蚀技术,在一片硅片上从正反面腐蚀形成的。上下电极的间隙由硅片的腐蚀深度决定。硅膜片和衬底利用键合技术键合在一起,形成具有一定稳定性的硅膜片电容压力传感器2 。由于铂电阻耐高温,且对温度敏感,选用铂电阻,既可
8、以当普通电阻使用,又可以作为温度传感器用以探测被测环境的温度。金属铂电阻和硅膜片的参数为:0 时铂电阻值为1 000;电阻率为1. 052 631 6 10 - 5cm;密度为21 440 kg/ m3 ;比热为132. 51 J/ (kgK) 、熔断温度为1 769 ,故铂电阻可加工为宽度为0. 02 mm;厚度为0. 2m;总长度为3 800m,制作成锯齿状,可在幅值为10 V 的阶跃信号下正常工作。电容式压力传感器的上下电极的间隙为3m、圆形平板电容上下电极的半径为73m、其电容值为50 pF。具体工艺流程图如图1所示。2图1-1 MEMS 工艺流程1.2压力传感器压力变送器在测试的时候
9、也有很多的因素影响,首先是被测介质的两种压力通入高、低两压力室,低压室压力采用大气压或真空,作用在元件(即敏感元件)的两侧隔离膜片上,通过隔离片和元件内的填充液传送到测量膜片两侧。压力变送器是由测量膜片和两侧绝缘片上的电极各组成一个电容器。 当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通过振荡和解调环节,转换成和压力成正比的信号。111.2.1压力传感器的原理随着我国国民经济的快速发展,压力传感器成为工业实践中最为常用的一种传感器,而我们通常使用的压力传感器最主要的是利用压力效应制造而成的,这样的传感器也成为压力传感器。科学家根据晶体是各向异性的,非晶
10、体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;而当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。这个效应研制出了压力传感器。压力传感器中主要使用的压电材料包括有石英,酒石酸钾钠和硝酸二氢铵。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电
11、灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以 已经得到了广泛的应用。压力传感器原理在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻
12、、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。压力传感器原理压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广。除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式
13、传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。41.3通过运放实现的放大电路的压力传感器1.3.1三运放差分放大电路如图所示的同相并联三运放结构,这种结构可以较好地满足上面三条要求。放大器的第I级主要用来提高整个放大电 路的输入阻抗。第II级采用差动电路用以提高共模抑制比。 图1-2 三运放差分放大电路电路中输入级由A3、A4两个同相输入运算放大器电路并联,再与A5差分输入串联的三运放差动放大电路构成,其中A1、A2是增加电路的输入阻抗。电路优 点:差模信号按差模增益放大,远高于共模成分(噪声);决定增益的电阻(R1、Rp、R3)理论上对共模抑制
14、比Kcmr没有影响,因此电阻的误差不重要。三运放差分放大电路特点:1)高输入阻抗。被提取的信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。 一般情况下,信号源的内阻为100k,则放大器的输入阻抗应大于1M。2)高共模抑制比CMRR。信号工频干扰以及所测量的参数以外的作用的 干扰,一般为共模干扰,前置级须采用CMRR高的差动放大形式,能减少共模干扰向差模干扰转化。3)低噪声、低漂移。主要作用是对信号源的影响小,拾取信号的能力强,以及能够使输出稳定。电路对共模输入信号没有放大作用,共模电压增益接近于零。这不仅与实际的共模输入有关,而且也 与A3和A4的失调电压和
15、漂移有关。如果A3和A4有相等的漂移速率,且向同一方向漂移,那么漂移就作为共模信号出现,没有被放大,还能被第二级抑制。这 样对于A3和A4的漂移要求就会降低。A3和A4前置放大级的差模增益要做得尽可能高,相比之下,第二级(A5)的漂移和共模误差就可以忽略,对放大器的 要求就可以大大降低。当R3=R4,R5=R6时,两级的总增益为两个差模增益的乘积,即:Avd=((Rp+2R1)/Rp)(R6/R4) 由此可知,上述电路具有输入阻抗高,共模抑制比高等优点,可作为通用仪用放大器使用。1.3.2 UA741运放型号的介绍 uA741M,uA741I,uA741C(单运放)是高增益运算放大器,用于军事
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压力传感器 调理 电路 设计 31
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内