二次根式综合复习(提优)(11页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次根式综合复习(提优)(11页).doc》由会员分享,可在线阅读,更多相关《二次根式综合复习(提优)(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-二次根式综合复习(提优)二次根式全章综合复习 学习目标1、理解二次根式的概念,并利用(a0)的意义解答具体题目2、 理解(a0)是一个非负数和()2=a(a0)并利用它们进行计算和化简3、二次根式的运算与化简求值学习重点二次根式的性质及其运算知识点一:二次根式的概念【知识要点】 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才9有意义【典型例题】 例1、下列各式1),其中是二次根式的是_(填序号)练习:1、下列各式中,一定是二次根式的是( )A、 B、 C、 D、2、在、中是二次根式的个数有_个例2、若式子有意义,则x的取值范围是 来源:学*科*网Z*X*X*K
2、练习:1、使代数式有意义的x的取值范围是( ) A、x3 B、x3 C、 x4 D 、x3且x42、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限例3、若y=+2009,则x+y= 练习:1、若,则xy的值为( )A1 B1 C2 D32、当取什么值时,代数式取值最小,并求出这个最小值。例4、已知a是整数部分,b是 的小数部分,求的值。练习:1、若的整数部分是a,小数部分是b,则 。2、若的整数部分为x,小数部分为y,求的值.知识点二:二次根式的性质【知识要点】 1. 非负性:是一个非负数注意:此性质可作公式记住,后面根式运算中经
3、常用到2. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:3. 注意:(1)字母不一定是正数 (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替 (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外4. 公式与的区别与联系 (1)表示求一个数的平方的算术根,a的范围是一切实数 (2)表示一个数的算术平方根的平方,a的范围是非负数 (3)和的运算结果都是非负的【典型例题】 例4、若则 练习:1、已知为实数,且,则的值为( )A3B 3C1D 12、已知直角三角形两边x、y的长满足x240,则第三边长为.3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 综合 复习 提优 11
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内