二次函数与几何图形结合.doc
《二次函数与几何图形结合.doc》由会员分享,可在线阅读,更多相关《二次函数与几何图形结合.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数与几何图形结合类型一 图形面积有关1、 已知抛物线的图象与x轴交与点A(3,0)和点C,与y轴交与点B(0,3)(1) 求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由2、 已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交与点C(0,5)。(1) 求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN
2、取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标3、如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)(1)求抛物线的对称轴和点A的坐标;(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式
3、;若不存在,请说明理由4、 如图1,已知抛物线yax2bxc经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图2,若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值和此时点E的坐标;若不存在,请说明理由类型二 探究图形形状问题1、 如图,已知抛物线经过A(1.0),B(0,3)两点,对称轴是x=-1。(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 几何图形 结合
限制150内