二次函数学案全章.doc
《二次函数学案全章.doc》由会员分享,可在线阅读,更多相关《二次函数学案全章.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1课时 二次函数的概念【学习目标】1经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;2探索并归纳二次函数的定义;3能够表示简单变量之间的二次函数关系。【学习重点】掌握二次函数的概念并能利用概念解答相关的题型。【课时类型】概念课【学习过程】一、学习准备1函数的定义:在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称 是 的函数,其中 是自变量, 是因变量。2一次函数的关系式为y= (其中k、b是常数,且k0);正比例函数的关系式为y (其中k是 的常数);反比例函数的关系式为y= (k是 的常数)。二
2、、解读教材数学知识源于生活3某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。假设果园增种x棵橙子树,那么果园共有 棵橙子树,这时平均每棵树结 个橙子,如果果园橙子的总产量为y个,那么y= 。4如果你到银行存款100元,设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。那么你能写出两年后的本息和y(元)的表达式(不考虑利息税)吗? 。5能否根据刚才推导出的式子y=-5x2+100x+60000和y=100x
3、2+200x+100猜想出二次函数的定义和一般形式吗?注意:(1)关于x的代数式一定是整式,其中a,b,c为常数且a0;(2)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项哟!一般地,形如yax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数。它就是二次函数的一般形式,理解并熟记几遍。例1 下列函数中,哪些是二次函数?(1) (2)(3) (4)(5) (6)即时练习:下列函数中,哪些是二次函数?(1) (2) (3) (4) (5) (6) 三、挖掘教材6对二次函数定义的深刻理解和运用例2 若函数 是二次函数,求k的值。分析:x的最高次数等于2,即k2-3k+2
4、=2,求出k的值即可。解:即时练习:若函数是二次函数,则k的值为 。四、反思小结1我们通过观察、思考、合作,交流,归纳出二次函数的概念,并从中体会函数的建模思想。2定义:一般地,形如y=ax+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数。3二次函数y=ax+bx+c(a,b,c是常数,a0)的几种不同表示形式:(1) y=ax (a0); (2) y=ax+c (a0且c0); (3) y=ax+bx (a0且b0)。4二次函数定义的核心是关键字“二”,即必须满足自变量最高次项的指数为_,且_项系数不为_的整式。【达标测评】1下列函数不属于二次函数的是( )Ay=(x1)(x+2)
5、 By=(x+1)2 Cy=2(x+3)22x2 Dy=1x22在边长为6 cm的正方形中间剪去一个边长为x cm(x0),y随x的增大而 ;在对称轴的右侧(x0x0)y=ax2(a0时,y随x的增大而增大,求m的值。分析:函数的图象是抛物线,则它是二次函数,所以m2+m-10=2,且m0; 当x0时,y随x的增大而增大,所以m0。解:由题意得:解得:又当x0时,y随 x的增大而增大,所以m0。 m=310已知抛物线y=ax2经过点A(-2,-8),(1)求此抛物线的函数解析式;(2)判断点B(-1,- 4)是否在此抛物线上;(3)求出此抛物线上纵坐标为-6的点的坐标。四、反思小结二次函数的y
6、ax2(a0)的图象与性质:五个方面理解: , , , , 。【达标测评】1抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小。当x= 时,函数y的值最小,最小值是 。抛物线y=2x2的图象在 方(除顶点外)。2函数yx2的顶点坐标为 ,若点(a,4)在其图象上,则a的值是 。3函数yx2与 y-x2的图象关于 对称,也可以认为y-x2 是函数yx2的图象绕 旋转得到的。4求出函数y=x+2与函数yx2的图象的交点坐标 。5若a1,点(a-1,y1),(a,y2),(a+1,y3)都在函数yx2的图象上,判断y1,y2,y3的大小关系是 。第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 学案全章
限制150内