中值定理及导数应用习题课课件.ppt
《中值定理及导数应用习题课课件.ppt》由会员分享,可在线阅读,更多相关《中值定理及导数应用习题课课件.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于中值定理及导数应用习题课现在学习的是第1页,共28页 拉格朗日中值定理 )()(bfaf一、一、 微分中值定理及其应用微分中值定理及其应用1. 微分中值定理及其相互关系微分中值定理及其相互关系 罗尔定理 0)(fxyoab)(xfy )()()()()()(FfaFbFafbfabafbff)()()()()()(bfafxxF10) 1(! ) 1(1)(nnnxxf 柯西中值定理 xxF)(xyoab)(xfy 泰勒中值定理 )()()(000 xxxfxfxfnnnxxxf)(00)(!10n机动 目录 上页 下页 返回 结束 现在学习的是第2页,共28页2. 微分中值定理的主要应用
2、微分中值定理的主要应用(1) 研究函数或导数的性态(2) 证明恒等式或不等式(3) 证明有关中值问题的结论机动 目录 上页 下页 返回 结束 现在学习的是第3页,共28页3. 有关中值问题的解题方法有关中值问题的解题方法利用逆向思维逆向思维 , 设辅助函数 .一般解题方法:证明含一个中值的等式或根的存在 ,(2) 若结论中涉及到含中值的两个不同函数 ,(3) 若结论中含两个或两个以上的中值 ,可用原函数法找辅助函数 .多用罗尔定理罗尔定理,可考虑用柯西中值定理柯西中值定理 .必须多次应用多次应用中值定理中值定理 .(4) 若已知条件中含高阶导数 , 多考虑用泰勒公式泰勒公式 ,(5) 若结论为
3、不等式 , 要注意适当适当放大放大或缩小缩小的技巧.有时也可考虑对导数用中值定理对导数用中值定理 .机动 目录 上页 下页 返回 结束 现在学习的是第4页,共28页例例1. 设函数在)(xf),(ba内可导, 且,)(Mxf证明在)(xf),(ba内有界. 证证: 取点, ),(0bax 再取异于0 x的点, ),(bax对xxxf,)(0在以为端点的区间上用拉氏中值定理,得)()()(00 xxfxfxf)(0之间与界于xx)()()(00 xxfxfxf00)()(xxfxf)()(0abMxfK(定数)可见对任意, ),(bax,)(Kxf即得所证 .机动 目录 上页 下页 返回 结束
4、现在学习的是第5页,共28页例例2. 设在)(xf 1 ,0内可导, 且,0) 1 (f证明至少存在一点)(f, ) 1 ,0(使上连续, 在) 1 ,0()(2 f证证: 问题转化为证.0)(2)(ff设辅助函数)()(2xfxx 显然)(x在 0 , 1 上满足罗尔定理条件,故至, ) 1 ,0(使0)()(2)(2ff即有)(f)(2 f少存在一点机动 目录 上页 下页 返回 结束 现在学习的是第6页,共28页例例3.,)(,)(内可导,在,上连续在设babaxf且,0ba 试证存在).(2)(fbaf使, ),(,ba证证: 欲证,2)()(fbaf因 f ( x ) 在 a , b
5、上满足拉氏中值定理条件,故有),(, )()()(baabfafbf,)(2上满足柯西定理条件在及又因baxxf),(,2)()()(22bafabafbf将代入 , 化简得故有),(2)(fbaf),(,ba即要证.2)()(22fababf机动 目录 上页 下页 返回 结束 现在学习的是第7页,共28页例例4. 设实数满足下述等式naaa,1001210naaan证明方程在 ( 0 , 1) 内至少有一个实根 .010nnxaxaa证证: 令,)(10nnxaxaaxF则可设121012)(nnxnaxaxaxF, 1,0)(,上连续在显然xF且)0(F由罗尔定理知存在一点, ) 1 ,0
6、(使,0)(F即.10010内至少有一个实根),(在nnxaxaa机动 目录 上页 下页 返回 结束 ,) 1,0(内可导在,0) 1 (F现在学习的是第8页,共28页例例5.机动 目录 上页 下页 返回 结束 设函数 f (x) 在0, 3 上连续, 在(0, 3) 内可导, 且 , 1)3(, 3)2() 1 ()0(ffff使, )3, 0(. 0)(f分析: 所给条件可写为1)3(, 13)2() 1 ()0(ffff(03考研) 试证必存在 想到找一点 c , 使3)2() 1 ()0()(fffcf证证: 因 f (x) 在0, 3上连续, 所以在0, 2上连续, 且在0, 2上有
7、最大值 M 与最小值 m, 故Mfffm)2(),1 (),0(Mmfff3)2() 1 ()0(由介值定理, 至少存在一点 使, 2, 0c3)2() 1 ()0()(fffcf1, 1)3()( fcf,)3,(,3,)(内可导在上连续在且ccxf由罗尔定理知, 必存在 . 0)(, )3, 0()3,(fc使现在学习的是第9页,共28页,2)( xf例例6. 设函数在)(xf 1 ,0上二阶可导, ) 1 ()0(ff且证明. 1)( xf证证:, 1,0 x由泰勒公式得)0(f) 1 (f两式相减得221221)()1)()(0 xfxfxf 221221)()1)()(xfxfxf
8、221221)()1 ()(xfxf 22)1 (xx)1 (21xx 1,0,1x)(xfxxf)( 221)(xf ) 10() 10()1)()1)()(221 xfxxfxf机动 目录 上页 下页 返回 结束 现在学习的是第10页,共28页二、二、 导数应用导数应用1. 研究函数的性态:增减 ,极值 ,凹凸 , 拐点 ,渐近线 ,曲率2. 解决最值问题 目标函数的建立与简化 最值的判别问题3. 其他应用 :求不定式极限 ;几何应用 ;相关变化率;证明不等式 ;研究方程实根等.4. 补充定理 (见下页)机动 目录 上页 下页 返回 结束 现在学习的是第11页,共28页设函数)(, )(x
9、gxf在上具有n 阶导数,),(a且) 1,2, 1 ,0()()() 1 ()()(nkagafkk)()()()2()()(axxgxfnn则当ax 时. )()(xgxf证证: 令, )()()(xgxfx则;) 1, 1 ,0(0)()(nkak)(0)()(axxn利用)(x在ax 处的 n 1 阶泰勒公式得)(x)(xa因此ax 时. )()(xgxf0nnaxn)(!)()(定理定理.机动 目录 上页 下页 返回 结束 现在学习的是第12页,共28页的连续性及导函数例例7. 填空题填空题(1) 设函数上连续,在),()(xf的则)(xf其导数图形如图所示,机动 目录 上页 下页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中值 定理 导数 应用 习题 课件
限制150内