《人工智能天气决策树源代码(9页).doc》由会员分享,可在线阅读,更多相关《人工智能天气决策树源代码(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人工智能天气决策树源代码-第 9 页昆明理工大学信息工程与自动化学院学生实验报告( 2011 2012 学年 第 1 学期 )课程名称:人工智能 开课实验室:信自楼计算机机房444 2011 年12月 16 日专业班级0学号200姓名成绩实验名称天气决策树指导教师 教师评语该同学的实验能力:A.强 B.中等 C.差 该同学的实验是否达到要求:实验报告是否规范:实验过程是否详细记录:B.一般 C.没有 教师签名: 2011 年12 月 日一、上机目的及内容根据下列给定的14个数据,运用Information Gain构造一个天气决策树。例子编号属 性分类天况温度湿度风况1晴热大无N2晴热大有N
2、3多云热大无P4雨中大无P5雨冷正常无P6雨冷正常有N7多云冷正常有P8晴中大无N9晴冷正常无P10雨中正常无P11晴中正常有P12多云中大有P13多云热正常无P14雨中大有N(1)学习用Information Gain构造决策树的方法;(2)在给定的例子上,构造出正确的决策树;(3)理解并掌握构造决策树的技术要点。二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)设计并实现程序,构造出正确的决策树;(2)对所设计的算法采用大O符号进行时间复杂性和空间复杂性分析;主函数流程图:Basefun流程图:Datapiont.cpp流程图:Dataset主要流程图:三、所用仪器、材料(设备名
3、称、型号、规格等或使用软件)四、 实验方法、步骤(或:程序代码或操作过程)工程源代码:Main.cpp:#include #include #include #include #include #include #include AttributeValue.h#include DataPoint.h#include DataSet.hDataPoint processLine(std:string const& sLine)std:istringstream isLine(sLine, std:istringstream:in);std:vector attributes;/ TODO: n
4、eed to handle beginning and ending empty spaces.while( isLine.good() )std:string rawfield;isLine rawfield;attributes.push_back( AttributeValue( rawfield ) );AttributeValue v = attributes.back();attributes.pop_back();bool type = v.GetType();return DataPoint(attributes, type);void main()std:ifstream i
5、fs(in.txt, std:ifstream:in);DataSet initDataset;while( ifs.good() )/ TODO: need to handle empty lines.std:string sLine;std:getline(ifs, sLine);initDataset.addDataPoint( processLine(sLine) );std:list processQ;std:vector finishedDataSet;processQ.push_back(initDataset);while ( processQ.size() 0 )std:ve
6、ctor splittedDataSets;DataSet dataset = processQ.front();dataset.splitDataSet(splittedDataSets);processQ.pop_front();for (int i=0; isplittedDataSets.size(); +i)float prob = splittedDataSetsi.getPositiveProb();if (prob = 0.0 | prob = 1.0)finishedDataSet.push_back(splittedDataSetsi);elseprocessQ.push_
7、back(splittedDataSetsi);std:cout The dicision tree is: std:endl;for (int i = 0; i finishedDataSet.size(); +i)finishedDataSeti.display();Attributevalue.cpp:#include AttributeValue.h#include base.hAttributeValue:AttributeValue(std:string const& instring):m_value(instring)bool AttributeValue:GetType()i
8、f (m_value = P)return true;else if (m_value = N)return false;elsethrow DataErrException();Basefun.cpp:#include float log2 (float x)return 1.0 / log10(2) * log10(x);float calEntropy(float prob)float sum=0; if (prob = 0 | prob = 1)return 0;sum -= prob * log2(prob);sum -= (1 - prob) * log2 ( 1 - prob )
9、;return sum;Datapiont.cpp:#include #include DataPoint.hDataPoint:DataPoint(std:vector const& attributes, bool type):m_type(type)for (int i=0; iattributes.size(); +i)m_attributes.push_back( attributesi );void DataPoint:display()for (int i=0; im_attributes.size(); +i)std:cout t m_attributesi.getValue(
10、);if (true = m_type)std:cout tP;elsestd:cout tN;std:cout std:endl;Dataset.cpp:#include #include #include base.h#include DataSet.hvoid SplitAttributeValue:display()std:cout tSplit attribute ID( m_attributeIndex )t;std:cout Split attribute value( m_v.getValue() ) std:endl;void DataSet:addDataPoint(Dat
11、aPoint const& datapoint)m_data.push_back(datapoint);float DataSet:getPositiveProb()float nPositive = 0;for(int i=0; im_data.size(); +i)if ( m_datai.isPositive() )nPositive+;return nPositive / m_data.size();struct Statint nPos;int nNeg;int id;void DataSet:splitDataSet(std:vector& splittedSets)/ find
12、all available splitting attributesint nAttributes = m_data0.getNAttributes();int i, j;std:vector splittingAttributeBV;splittingAttributeBV.resize(nAttributes);for (i=0; inAttributes; +i)splittingAttributeBVi = true;for (i=0; im_splitAttributes.size(); +i)splittingAttributeBV m_splitAttributesi.getAt
13、tributeIndex() = false;std:vector splittingAttributeIds;for (i=0; inAttributes; +i)if (true = splittingAttributeBVi)splittingAttributeIds.push_back(i);typedef std:map AttributeValueStat;typedef std:map:iterator AttributeValueStat_iterator;typedef std:map:const_iterator AttributeValueStat_const_itera
14、tor;/ go through data once, and collect needed statistics to calculate entropystd:vector splittingStats;splittingStats.resize( splittingAttributeIds.size() );for (i=0; im_data.size(); +i)for (j=0; jsplittingAttributeIds.size(); +j)AttributeValue const& v = m_datai.getAttribute(splittingAttributeIdsj
15、);AttributeValueStat_iterator it = splittingStatsj.find(v);if ( splittingStatsj.end() = it )Stat stat;if ( m_datai.isPositive() )stat.nPos = 1;stat.nNeg = 0;stat.id = 0;elsestat.nPos = 0;stat.nNeg = 1;stat.id = 0;splittingStatsj.insert(std:pair(v, stat);elseif ( m_datai.isPositive() )it-second.nPos+
16、;elseit-second.nNeg+;/ display collected statisticsfor (j=0; jsplittingAttributeIds.size(); +j)std:cout Attribute( splittingAttributeIdsj ): std:endl;std:cout tValue t nPos t nNeg std:endl;for (AttributeValueStat_const_iterator it = splittingStatsj.begin();it != splittingStatsj.end(); +it)std:cout t
17、 first.getValue() t second.nPos t second.nNeg std:endl;/ find splitting attributefloat minEntropy = 0.0;int splitAttributeId = -1;for (j=0; jsecond.nPos + it-second.nNeg;float p = it-second.nPos;p /= nSamples;entropy += calEntropy(p) * nSamples / n;if (entropy minEntropy | -1 = splitAttributeId)minE
18、ntropy = entropy;splitAttributeId = j;std:cout Split at attribute( splittingAttributeIdssplitAttributeId ) std:endl second.id = k+;splittedSets.resize( k);for (i=0; ik; +i)for (j=0; jsecond.id.m_splitAttributes.push_back(SplitAttributeValue(itt-first, attrId);for (i=0; isecond.id.addDataPoint(m_data
19、i);elsethrow DataErrException();void DataSet:display()int i;std:cout Dataset( this ) std:endl;for (i=0; im_splitAttributes.size(); +i)m_splitAttributesi.display();std:cout Data: std:endl;for (i=0; im_data.size(); +i)m_datai.display();std:cout std:endl;五、实验过程原始记录( 测试数据、图表、计算等)六、 实验结果、分析和结论(误差分析与数据处理、成果总结等。其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)Attributevalue.cpp的作用是判断正反例,以便下面的的划分决策过程,basefun.cpp的作用则是计算熵,通过熵的比。较才能够为下面的划分提供条件依据,而dataset.cpp就是具体的划分过程,首先找到可用的划分项目,再第一次划分之后再手机相关的数据来计算熵。之后再显示出来,做这个实验的时候我遇到了很大的难度,感觉它的要求和自己的实际水平相差很大,所以参考了很多资料才得以完成这个程序,也感觉到了自己的能力还很不足,还需要加强的地方还有很多。
限制150内