人脸识别发展史——(5页).doc
《人脸识别发展史——(5页).doc》由会员分享,可在线阅读,更多相关《人脸识别发展史——(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人脸识别发展史-第 5 页人脸识别的研究历史比较悠久。高尔顿(Galton)早在 1888 年和 1910 年就分别在Nature杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问 题。最早的AFR1的研究论文见于 1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。尤其是 1990 年以来,人脸识别更得到了长足的发展。几乎所有知名的理工科大学和主要IT产业公司都有研究组在
2、从事相关研究。 表 1 人脸识别发展历史简表人脸识别是一个被广泛研究着的热门 问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将 AFR 的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1 所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍。第一阶段(1964 年1990年)这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometric feature based)的方法。这
3、集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也 一度曾经被研究人员用于人脸识别问题中。较早从事 AFR 研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于 1973 年在京都大学完成了第一篇 AFR 方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域 的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成
4、果不是很多,也基本没有获得实际应用。第二阶段(1991 年1997年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的 FERET 人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为 Identix)的 FaceIt 系统。 美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后 的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(Normalized C
5、orrelation)方法一道成为人脸识别的性能测试基准算法。 这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥Poggio)于 1992 年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方 法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance- based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeu
6、r)等提出的 Fisherface 人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(Principal Component Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(Linear Discriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比 如零空间法、子空间判别模型、增强判别模型、直接的 LDA 判别方法以及近期的一些基于核学习的改进策略。 麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础
7、上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,人脸图像 对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件 概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。 脸识别中的另一种重要方法弹性图匹配技术(Elastic Graph Matching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征 Gabor变换12特征,称为Jet;边的属性则为不同
8、特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的若干 面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该方法的优点是既保留了面部 的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该方法的扩展。 局部特征分析技术是由洛克菲勒大学(Rockefeller University)的艾提克(Atick)等人提出的。 LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA 相比,LFA 在全局 PCA 描述的基础上提取的特征是局部的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 识别 发展史
限制150内