人类病毒病的预防与治疗(14页).doc
《人类病毒病的预防与治疗(14页).doc》由会员分享,可在线阅读,更多相关《人类病毒病的预防与治疗(14页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-人类病毒病的预防与治疗-第 15 页人类病毒病的预防与治疗生物技术一班 09121007摘要:病毒病是严重影响人类健康的疾病之一,但是其特殊性导致其治疗较其他疾病困难得多,本文从人类病毒病的研究历史、人类病毒的防治现状、人类病毒病防治的发展方向等方面介绍人类长期以来与病毒病的斗争与展望,并介绍一些治疗人类病毒病的前沿技术。关键词:人类病毒病 预防治疗 研究历史 防治现状 发展方向 正文:说起人类病毒,能马上联想到的词汇有很多,艾滋病病毒,乙肝病毒,疯牛病病毒,等等。当然,最震撼人心的还是SARS病毒,引爆了2002年冬到2003年春肆虐全球的非典型性肺炎。确实,就如组成“病毒”这个词的两个单
2、字“病”和“毒”所描述的一样,病毒对人类、动物和植物等生命体的生存造成了极大的威胁。据大概统计,大约70%的人类传染病是由病毒引起的。中世纪引起全欧洲恐慌的黑死病,其学名叫鼠疫,就是由病毒大家庭中的一员鼠疫病毒引起的。在发现病毒以前,人们已开始不自觉地利用病毒为人类服务。中国在16世纪前后,用天花患者脓疮中的浆液给健康人接种而使之获得免疫力。差不多同时,荷兰的种植者用嫁接法使郁金香感染病毒而开出美丽的碎色花朵;1796年E琴纳发明了牛痘苗;1885年L路易斯巴斯德首创了狂犬病疫苗。 1915年FW特沃特和1917年F埃雷尔分别发现了细菌病毒即噬菌体。从30年代起开始探索病毒的理化性质,M施莱辛
3、格提纯了噬菌体并指出它是由蛋白质和DNA构成的;1935年WM斯坦利获得了烟草花叶病毒的结晶;1936年首次在电子显微镜下看到该病毒是一种杆状颗粒。以后许多病毒相继被提纯,对他们的形态结构和化学组分进行了研究,为病毒分类提供了依据。 由于病毒的结构和组分简单,有些病毒又易于培养和定量,因此从20世纪40年代以来,病毒一直是分子生物学研究的重要材料。30年代末,以M德尔布吕克为代表的学者开始用大肠杆菌的T偶数噬菌体研究其复制和遗传机制,奠定了分子遗传学的基础。70年代,研究重点逐渐转向动物病毒。分子生物学发展中的重要进展,如DNA和RNA是遗传物质的确证,三联体密码学说的形成,核酸复制机制的阐明
4、,遗传信息流中心法则的提出,反转录酶、基因的重叠和不连续性等的发现,以至基因工程的兴起和致癌理论的发展,几乎无一不与病毒有关。一些蛋白质和核酸的一级结构分析,也常常是首先以病毒为材料研究完成的。反过来,分子生物学研究又促进了对病毒结构、复制和遗传的认识,使病毒学发展成一门独立的分支学科。(一)病毒病害的病原研究阶段自病毒发现直到上个世纪30年代初,病毒学研究主要集中在:分离和鉴定引起各种病毒性疾病的病毒;病毒对疾体所引起的特异性病理效应;病毒的传播方式和感染宿主范围;各种理化因子对病毒感染的影响等方面。在病毒发现的那一年,1898年德国细菌学家勒夫勒和弗施(Loeffler和Frosch)证实
5、了口蹄疫病毒(Foot-and-mouth disease virus)的存在。1911年,劳斯(Rous)发现了引起鸡的恶性肿瘤的劳斯肉瘤病毒(Rous sarcoma virus, RSV)。1915-1917年,托特和德爱莱尔(Twort和dHerelle)分别发现了噬菌体。人们通过过滤性试验,相继发现了近百种病毒病害,包括流感、骨髓灰质炎、几种脑炎、狂犬病、兔的粘液瘤、马铃薯花叶病、卷叶病、和条斑病、黄瓜花叶病、小麦花叶病等。而且人们从解决病害观点出发,在机体水平上研究了病毒感染的症状、传播途径、传播介体以及病毒的繁殖特征。1899年古巴流行黄热病,细菌学家里德(Reed)证明罪犯确实
6、是伊蚊。接着日本人高见(Takami)证明一种叶蝉会传水稻矮花病,蚜虫会传马铃薯退化病。300多年前(1619年)就知道的郁金香碎色病直到1929年才证明是蚜虫传的。这时期还发现了一些非常有趣的病毒生物学现象,如一种病毒通过变异,产生致病力强弱不等毒株。而且同一种病毒的不同毒株彼此间有拮抗,称干扰现象。还有人发现把病植株的汁液注入到动物体内后,动物的血清和病汁液起特异的反应。这些研究成果都对当时防治病毒病起了重要作用。在这一阶段,人们对病毒本质的认识还很肤浅,认为病毒是一种与细菌类似的病原体,所不同的仅在于病毒必须在生活的细胞内才能繁殖,再就是体积十分微小,以致在显微镜下不能见到,能够通过细菌
7、滤器。这也正是在那一时期把病毒称之为“超显微的滤过性病毒”的原因。(二)病毒的化学和结构研究阶段1935年,美国生化学家斯坦利(Stanley)发现烟草花叶病毒的侵染性能被胃蛋白酶破坏,在这一现象的启示下,他几乎磨了上吨重的感染花叶病的烟叶,企图用提酶的方法把病毒提纯出来。他得到了一小匙在显微镜下看来是针状结晶的东西,把结晶物放在少量水中,水就出现乳光了,用手指沾一点这溶液,在健康烟叶上磨擦几下,一星期以后这棵烟草也得了同样类型的花叶病。可见提纯的东西的确是有侵染性的烟草花叶病毒。今天在美国加州大学的原来斯坦利实验室里,仍然保留着一个标注着“Tob. Mos.”字样的瓶子,其中就盛着当年第一次
8、提纯的烟草花叶病毒(简称TMV)。根据各种试验结果,证明这种结晶物质是蛋白质,初步的渗透压和扩散测定表明,这种蛋白质的分子量高达几百万。其结晶制品的侵染性依赖于蛋白质的完整性,侵染性被认为是病毒蛋白质的一种性质。Stanley 的研究论文1953年发表在Science杂志上,他在论文中写道:“烟草花叶病毒是一种具有自我催化能力的蛋白质,它的增殖需要活体细胞的存在”。在获得TMV结晶之后的将近20年时间里,许多其他病毒也相继被结晶出来,1955年,Scaffer和Schwerdt成功地结晶了脊髓灰质炎病毒,它是第一个被结晶出来的动物病毒。然而,Stanley在他的结晶工作中,并未注意到病毒的含磷
9、组分,1936年Bawden和Pirie等在纯化的TMV中发现了含磷和糖类的组分,它们以核糖核酸的形式存在, 通过热变化, 这种核酸可以从病毒粒子中释放出来,这一发现也被Stanley不久证实,Stanley及其同事证实几种不同植物病毒的核酸也能从核蛋白的形式中被分离出来。TMV的结晶及其化学本质的发现是对医学和生物科学的巨大贡献,它不仅引导人们从分子水平去认识生命的本质,而且为分子病毒学和分子生物学的诞生奠定了基础。鉴于Stanley在TMV研究中的突出贡献,1946年他被授予诺贝尔奖,这是病毒学领域第一个获此殊荣的科学家。(三)病毒研究的细胞水平时期这一时期,包括本世纪40年代至60年代。
10、在此期间,病毒学不论是在理论上还是在实践上都有很大的发展,逐步形成了一门独立的学科。由于这个时期对病毒的化学本质有了更清晰的认识,因而也有了较为统一的、明确的病毒概念。“噬菌体小组”围绕噬菌体与感染细菌细胞的相互关系进行了大量而深入的研究。这一时期的突出贡献在于:1940年M.Delbruck阐明了噬菌体的复制周期;1950年A.Lwoff揭示了溶原性噬菌体诱导的原理;1952年A.D.Hershey证明了噬菌体DNA的感染性;1952年N.D.Zinder发现了噬菌体的转导现象;1952年E.Wollman发现了溶原性噬菌体。2、组织培养技术开始应用于动物病毒的研究。我国学者黄祯祥早在194
11、3年就利用鸡胚组织块在试管内进行病毒传代、定量滴定及中和试验。我国已故微生物学和病毒学的奠基人高尚荫院士,1958年在国际病毒学研讨会上宣读了培养脓细胞的组织培养方法研究论文,从此揭开了中国昆虫病毒学研究的新篇章。许多学者采用这一新技术,相继分离了上百种过去对动物不敏感的新病毒,如腺病毒、副流感病毒、鼻病毒、呼吸道合胞病毒、Echo病毒和柯萨奇病毒,大大拓宽了病毒学的研究范围。组织培养技术不仅发展了临床病毒学,而且还可用于研究病毒的复制和遗传,使人们对病毒本质有了进一步的认识。1949年J.J.Enders利用单层细胞培养繁殖脊髓灰质炎病毒取得成功,并且由于他对脊髓灰质炎病毒的开创性研究,而于
12、1954年获得诺贝尔奖。1952年Dulbecco利用细胞单层培养进行了蚀斑试验,1953年Salk用细胞培养的脊髓灰质炎病毒制备出灭活疫苗,1957年Stewart用细胞培养技术还分离出多瘤病毒。目前组织培养技术已广泛应用于未知传染因子的分离,病毒病诊断,疫苗生产,以及病毒感染和复制的基础研究。组织培养技术对动物病毒研究所作的贡献主要包括:病毒转录新途径和翻译新途径的发现;病毒对宿主范围的选择;某些肿瘤病毒引起的细胞转化;某些病毒侵染引起的细胞融合;发现有的病毒核酸由若干片段组成;有的病毒核酸具有极性的不同,如小RNA病毒为正链RNA病毒,正粘病毒为负链RNA病毒。3、植物病毒不断有重要的发
13、现,如1952年J.I.Harris揭示了TMV外壳蛋白的化学性质,1955年H.Fraenkel-Conrat成功地将TMV的核酸及其蛋白亚基重建出感染的TMV,1956年H.Fraenkel-Conrat还证明TMV-RNA分子具有感染性,1956年F.A.Anderer阐明了TMV外壳蛋白变性的可逆性;1960年A.Tsugita测定了TMV外壳蛋白的氨基酸序列。中国农业大学裘维蕃院士对北京大白菜三大病害和华北小麦丛矮病等进行了深入研究。(四)分子病毒学的研究时期自从1953年DNA双螺旋结构理论建立以来,由于分子生物学的迅速发展,新技术和新方法的应用,使得病毒学的研究步入了分子病毒学的
14、发展时期。50年代至60年代是分子生物学的奠基时代,而病毒特别是噬菌体和植物病毒为此做出了巨大的贡献,因此分子病毒学也正是分子生物学的发展过程中应运而生。分子病毒学的发展是各相关学科如分子生物学、细胞生物学、遗传学、免疫学与病毒学理论和技术相互渗透的结果。尤其是分子生物学新技术的发明极大剌激了分子病毒学的发展。分子病毒学的发展经历了如下过程:1953年,Watson和Crick建立了DNA双螺旋结构理论,它使人们开始从分子水平上去认识遗传物质-DNA的结构基础和复制特性,理解基因表达与性状的关系,从而为分子生物学和分子病毒学的创立奠定了基础。1962年,D.L.D.Casfar阐明了许多病毒的
15、二十面体结构,明确了病毒核衣壳二十面体的构成规律,这是对病毒超微结构认识的重大突破。X174噬菌体。这些工作对以后阐明DNA病毒和RNA病毒 的繁殖机制起了重要作用。1967年,T.O.Diener发现了类病毒,他在试图分离马铃薯纺锤形块茎病的病毒时,发现其病原不是病毒,而是一种不含有蛋白质,分子量为105左右的裸露RNA。这样小的RNA分子不编码任何蛋白质。根据其特殊的性质,Diener把这类致病因子称为“类病毒(Viroids)”。随后的研究表明,类病毒RNA还有特殊的复制机制。类病毒的发现在分子病毒学史上是一个重要事件,它不仅揭示了自然界存在着比病毒更简单的生物,而且也使人们加深了对生命
16、起源的认识。在类病毒报道之后,有人在澳大利亚又发现了类似于类病毒的环状RNA分子还能与病毒基因组RNA共同包被于RNA病毒粒子中,引起绒毛菸、苜菪和地三叶草产生病害,其中类似于类病毒的RNA称为“拟病毒(virusoid)”104的蛋白质,称为“蛋白侵染因子”或“朊病毒”(prion)。根据类病毒的发现,Lavoff(1981)首先提出把病毒分为真病毒(envirus)和类病毒的概念。随着拟病毒和朊病毒的相继发现,1983年在意大利召开的“植物和动物的亚病毒病原:类病毒和朊病毒”国际学术讨论会上,把类病毒、拟病毒和朊病毒列入亚病毒(subvirus)。1968年,P.H.Duesberg发现流
17、感病毒的多节段RNA基因组,随后在其他一些病毒中如呼肠孤病毒、大麦条纹花叶病毒中也发现了病毒基因组分节现象的存在。1970年,P.H.Duelerg发现Rous肉瘤病毒含有癌基因v-src,而且在正常鸡以及其他脊椎动物和无脊椎动物的DNA中,也发现有癌基因v-src的同源序列存在,推测病毒癌基因是来自于细胞正常基因。随着其他肿瘤病毒致癌基因的发现,肿瘤病毒的细胞培养系统建立,以及肿瘤病毒对细胞转化诱导作用的确定,使人们对肿瘤发生的机制有了更深刻的了解。1970年,H.M.Temin和D.Baltimor分别发现了病毒的逆转录酶。逆转录酶基因组RNA在逆转录酶的作用下,首先合成原病毒DNA,然后
18、原病毒可整合到宿主染色体DNA上。除了病毒癌基因外,原病毒在宿主DNA上的插入、整合,也可以引起细胞癌基因的激活和细胞转化,逆转录酶和逆转录过程的发现,是对Crick 1958年提出的遗传学中心法则的重要补充和发展,说明遗传信息不仅可以从DNA RNA,也可由RNA DNA。1971年,限制性内切酶技术的发现为DNA序列分析和病毒基因的定位创造了条件,利用这一技术曾经成功地为乳头瘤病毒、多瘤病毒、腺病毒、疱疹病毒构建了酶切图谱。另一些新技术如基因转移方法、Southen blot的相继诞生,也加快了病毒特异性基因,尤其是转化基因的定位和病毒核酸序列分析的进程。除此以外,70年代出现的DNA重组
19、技术,使一些病毒基因组能在原核细胞的质粒载体上克隆,并在细菌中能够得到大量复制和表达产物,因而有利于探寻病毒的基因组结构和功能。1977年,英国剑桥大学的Sanger完成了X174-DNA全部序列的测定,为此Sanger第二次获得诺贝尔奖。根据X174-DNA全部序列的分析结果,Sanger意想不到地发现了基因重叠现象。随后,在DNA噬菌体如R17、MS2、F2、Q中也证实了基因重叠现象的存在,这是病毒利用有限的遗传信息执行更多的功能,提高自身在进化过程中适应能力的一种表现。1977年,LTChow阐明了腺病毒转录过程中的mRNA拼接现象,随后在SV40、多瘤病毒中也相继发现了mRNA转录后的
20、拼接过程,从而证实了真核基因的不连续性,明确了内含子(intron)和外显子(exon)的概念。1978年,WFiers和V.B.Reddy测定了SV40-DNA的一级结构由5224个碱基对组成。SV40是第一个全部核苷酸序列被搞清楚的真核病毒,它含有结构基因VP1、VP2、VP3以及转化基因T和t,整个基因组有12.5%非编码区或非翻译区,在这些区域中包含启动子、增强子序列和其他调节序列,可对病毒基因组复制、转录、翻译进行调控。由于SV40既是研究真核基因结构和表达的良好模型,又是研究癌变机制的理想材料,因此,SV40-DNA一级结构的测定具有重要意义。在70年代,Miller和Barbar
21、a研究X174-DNA转录时还发现了X174-DNA仅有一条链被转录,他们利用X174噬菌体感染大肠杆菌,并在培养基中加入32P-磷酸盐以制备放射性的噬菌体mRNA,然后再将标记的mRNA分离出来,让其与分开来的RF-DNA正负链杂交,结果观察到仅有RF-DNA的负链与标记mRNA形成杂交体。因而让实在活体内X174的RF DNA中仅一条链是转录的模板。与此相类似,T7噬菌体DNA在活体中也只有一条单链被转录。但在T4或噬菌体中情形较为复杂,其基因组中的某些部分是以一条链作为模板,而在另一区域,则是以另一条链为模板。大肠杆菌基因组的转录也同样存在一组基因与另一组基因的模板链不同。 1979年,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人类 病毒 预防 治疗 14
限制150内