几何辅助线之手拉手模型初三.doc
《几何辅助线之手拉手模型初三.doc》由会员分享,可在线阅读,更多相关《几何辅助线之手拉手模型初三.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、手拉手模型教学目标:1:理解手拉手模型的概念,并掌握其特点2:掌握手拉手模型的应用知识梳理:1、等边三角形条件:OAB,OCD均为等边三角形结论:;导角核心:2、等腰直角三角形条件:OAB,OCD均为等腰直角三角形结论:;导角核心:3、任意等腰三角形条件:OAB,OCD均为等腰三角形,且AOB = COD结论:;核心图形:核心条件:;典型例题:例1:在直线ABC的同一侧作两个等边三角形ABD和BCE,连接AE与CD,证明:(1)ABEDBC;(2)AE=DC;(3)AE与DC的夹角为60;(4)AGBDFB;(5)EGBCFB;(6)BH平分AHC;GFAC例2:如果两个等边三角形ABD和BC
2、E,连接AE与CD,证明:(1)ABEDBC;(2)AE=DC;(3)AE与DC的夹角为60; (4)AE与DC的交点设为H,BH平分AHC例3:如果两个等边三角形ABD和BCE,连接AE与CD,证明:(1)ABEDBC;(2)AE=DC;(3)AE与DC的夹角为60;(4)AE与DC的交点设为H,BH平分AHC例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H问:(1)ADGCDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问 (1)ADGCDE
3、是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,ABD=CBE,连接AE与CD. 问(1)ABEDBC是否成立?(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?(4)HB是否平分AHC?例7:如图,分别以ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE ,AC =AD,BAE =CAD=90,点G为BC中点,点F 为BE 中点,点H 为CD中点。探索GF 与GH 的位置和数量关系并说明理由。例8:如图1,已知DAC=90,ABC是等边三角形,点P为
4、射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想QEP=_;(2)如图2,3,若当DAC是锐角或钝角时,其它条件不变,猜想QEP的度数,选取一种情况加以证明;(3)如图3,若DAC=135,ACP=15,且AC=4,求BQ的长例9:在ABC中,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作ADE,使,连接CE1)如图1,当点D在线段CB上,且时,那么_度;(2)设,如图2,当点D在线段CB上,时,请你探究与之间的数量关系,并证明你的结论;如图3,当点D在线段CB的延长线上,时,请
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 辅助线 手拉手 模型 初三
限制150内