DSP技术应用现状以及发展趋势.docx
《DSP技术应用现状以及发展趋势.docx》由会员分享,可在线阅读,更多相关《DSP技术应用现状以及发展趋势.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、DSP技术应用现状以及发展趋势一、数字信号处理结构。实时数字信号处理系统:采集系统+DSP芯片非实时系统:pc机上进行处理系统的模拟与仿真或仿真库+DSP芯片。1 DSP、MCU、MPU的关系微控制器MCU通俗的称呼是单片机,它与微处理器MPU是微机技术的两大分支。MPU的发展动力是人类对无止境的海量数值运算的需求,速度越来越快。MCU的发展是为了满足被控制对象的要求,向高可靠性、低功耗、低成本发展。一般MCU的引脚数在60以下,MCU以8位机为主、32位机为辅。有趋势提高MCU的运算功能,将DSP集成到MCU中,比如32位的MC68356集成了Motorola的DSP56002。微控制器MC
2、U一直存在两种基本结构:哈佛(Harvard)结构与冯诺依曼(von Meumann)结构,还可进一步讲是对应成复杂指令集计算机CISC与精简指令计算机RISC。冯诺伊曼结构具有单一总线PRAM或DRAM都映射到同一地址空间,总线宽度与CPU类型匹配。哈佛结构具有独立的程序总线与数据总线,CISC的指令一般是微码miccode,每条指令由CPU解码为许多基本指令,基于CISC的微控制器一般很复杂,都采用冯诺伊曼结构,所需要的程序存储器比RISC产品少。微码在CPU产生而限制了CISC器件的带宽,其指令集也比RISC器件大。68000的MPU是准32位的MPU,内部32位,外部总线是16位。苹果
3、机就是用68000系列,它的运行分成系统态与用户态,其设计是面向分时多任务或实时操作系统的,68000的总线后来变成VME总线标准。到68020就是全32位了。 1991年IEEE1149.1即JTAG的公布满足了IC制造商的措施需求,也给ASIC、MCU、MPU、DSP、PLD、FPGA等的用户带来方便。一般十万门以上的IC都有JTAG接口,1993年IEEE1149.5对JTAG作了修正(5线接口)。IC的测试分成晶片级、IC封装级、电路板与系统极,JTAG完成了前两者的测试。适于68000系列的32位机的开发工具ICD32是一段扁平电缆,一端接IC的JTAG的5线接口,一端通过25芯头(
4、里面有GAL)接PC机并口。传统上,微控制器MCU与微处理器MPU是两大分支,而DSP是MCU的一种特殊变形。但是从实质讲,MPU多半是CISC,除了DSP之外的MCU也是CISC。而DSP是RISC。所以比较时更适合DSP与MPU相比,MPU适宜于相同管理这样的应用中,以条件判断为主的应用,以软件管理的操作系统为核心的产品,MPU的设计侧重于不妨碍程序的流程,以保证操作系统支持功能及转移预测功能等。而DSP侧重于保证数据的顺利 通行,结构尽量简单。2 冯诺依曼结构与哈佛结构1945年,冯诺依曼首先提出了“存储程序”的概念与二进制原理,后来,人们把利用这种概念与原理设计的电子计算机系统统称为“
5、冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。冯.诺曼结构处理器具有以下几个特点:必须有一个存储器;必须有一个控制器;必须有一个运算器,用于完成算术运算与逻辑运算;必须有输入与输出设备,用于进行人机通信。另外,程序与数据统一存储并在程序控制下自动工作冯诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令与数据都是二进制码,指令与操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令与数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。在典型情况下,完成一条指令需要3个步骤,即:取指令、指令译码与
6、执行指令。从指令流的定时关系也可看出冯诺依曼结构与哈佛结构处理方式的差别。举一个最简单的对存储器进行读写操作的指令,指令1至指令3均为存、取数指令,对冯.诺曼结构处理器,由于取指令与存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。哈佛结构是一种将程序指令存储与数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码後得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储与数据存储分开,可以使指令与数据有不同的数据宽度,如Microchip公司的 PIC16芯片的程序指令是14位宽度
7、,而数据是8位宽度。哈佛结构的微处理器通常具有较高的执行效率。其程序指令与数据指令分开组织与存储的,执行时可以预先读取下一条指令。目前使用哈佛结构的中央处理器与微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列与安谋公司的ARM9、ARM10与ARM11。哈佛结构是指程序与数据空间独立的体系结构, 目的是为了减轻程序运行时的访存瓶颈.例如最常见的卷积运算中, 一条指令同时取两个操作数, 在流水线处理时, 同时还有一个取指操作, 如果程序与数据通过一条总线访问, 取指与取数必会产生冲突, 而这
8、对大运算量的循环的执行效率是很不利的.哈佛结构能基本上解决取指与取数的冲突问题.而对另一个操作数的访问, 就只能采用Enhanced 哈佛结构了, 例如像TI那样,数据区再split, 并多一组总线. 或向AD 那样, 采用指令cache, 指令区可存放一部分二、DSP应用方向,其他cpu与控制器融合趋势、发展方向 DSP技术在各领域的创新应用2.1 通信领域的应用近年来,随着通信技术的飞速发展,DSP已经成为信号与信息处理领域里一门十分重要的新兴学科,它代表着当今无线系统的主流发展方向。现在,通信领域中许多产品都与DSP密切联系,例如,Modem、数据加密、扩频通信、可视 等。而寻找DSP芯
9、片来实现算法最开始的目标是在可以接受的时间内对算法做仿真,随后是将波形存储起来,然后再加以处理。图1所示,给出了一个典型的DSP应用系统。数字蜂窝 是DSP最为重要的应用领域。因DSP具有强大的计算能力,使得移动通信的蜂窝 重新崛起,并创造了一批诸如GSM、CDMA等全数字蜂窝 网3。由于采用DSP 技术,蜂窝 的更新换代变得更为容易,只需在统一的硬件平台基础上,通过软件的不断升级生产各式各样的新款手机。图1 系统方框图输入信号首先进行带限滤波与抽样,然后进行模/数转换,将模拟信号转换成数字比特流。根据香农抽样定理,为保持信息的不丢失,抽样频率至少必须是输入带限信号最高频率的两倍。2.2 仪器
10、仪表领域的应用DSP已经涉足测量仪表与测试仪器行业,而且大有取代高档单片机的趋势。使用DSP开发测量仪表与测试仪器可将产品提升到一个崭新的水平。新款DSP丰富的片内资源可以大大简化仪器仪表的硬件电路,实现仪器仪表的SOC(System On Chip,即片上系统)设计。仪器仪表的测量精度与速度是一项重要的指标,使用DSP芯片开发产品可使这两项指标大大提高。以TMS320F2810为例,其高效的32位CPU内核、优异的12位A/D转换器、丰富的片内存储器以及灵活的指令系统为我们开发快速、高精度仪器搭建了广阔的平台。目前DSP正处于一个高速发展的时期,仪器仪表是DSP的一个重要应用领域,相信DSP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DSP 技术 应用 现状 以及 发展趋势
限制150内