中考二次函数压轴题解题通法重点中学整理.doc
《中考二次函数压轴题解题通法重点中学整理.doc》由会员分享,可在线阅读,更多相关《中考二次函数压轴题解题通法重点中学整理.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考二次函数压轴题解题通法研究二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在宜宾市的拔尖人才考试中同样有二次函数大题,在成都,绵阳,泸县二中等地的外地招生考试中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都及函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。所以二次函数综合题自然就成了相关出题老师和专家的必选内容。我通过近年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。几个自定义概念: 三角形基本模型:有一边在X轴或Y
2、上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。 动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。如:动点P在21上, 就可设 P(t, 21).若动点在,则可设为(,)当然若动点M 在X轴上,则设为(t, 0).若动点M在轴上,设为(,) 动三角形:至少有一边的长度是不确定的,是运动变化的。或至少有一个顶点是运动,变化的三角形称为动三角形。 动线段:其长度是运动,变化,不确定的线段称为动线段。 定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。 定直线:其函数关系式是确定的,不含参数的直线称为定直
3、线。如:。 X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y标。 直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,及之共线的问题中的点叫间接动点。动点坐标“一母示”是针对直接动点坐标而言的。1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。、“平行于y轴的动线段长度的最大值”的问题:由于平
4、行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K点法)求出过已知点,且及已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题(方法1)先求出定直线的斜率,由此可设出及定直线平行且
5、及抛物线相切的直线的解析式(注意该直线及定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线及抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有-40(因为该直线及抛物线相切,只有一个交点,所以-4=0)从而就可求出该切线的解析式,再把该切线解析式及抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。(方法3)先把抛物线的方程对自变量求导,运用
6、导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。5.常数问题:(1)点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。(2)三角形面积中的常数问题:“抛物线上是否存在一点,使之及定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点(其坐标需用一个字母
7、表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。(3)几条线段的齐次幂的商为常数的问题:用K点法设出直线方程,求出及抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根及系数的关系,把问题中的所有线段表示出来,并化解即可。6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度应用两点间的距离公式计算即为符合题中
8、要求的最小距离,而该线段及定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。7.三角形周长的“最值(最大值或最小值)”问题: “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。 “在抛物线上是否存在一点,使之到定直线的垂线,及y轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题(简称“三边均动的问题):在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用,把动三角形的周长转化为一个开口向下的
9、抛物线来破解。8.三角形面积的最大值问题: “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面的方法,求出抛物线上的动点到该定直线的最大距离。最后利用三角形的面积公式 底高。即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。(方法2)过动点向y轴作平行线找到及定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到,转化为一个开口向下的二次函数问题来求出最大值。 “三边均动的动三角形面积最大”的问题(简称“三边均
10、动”的问题):先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形及图中另一个三角形相似(常为图中最大的那一个三角形)。利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一个三角形的高。从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,从而可把动四边形分割成一个动
11、三角形及一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法及7相同。10、“定四边形面积的求解”问题:有两种常见解决的方案:方案(一):连接一条对角线,分成两个三角形面积之和;方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点及原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)11.“两个三角形相似”的问题:两个定三角形是否相似:(1) 已知有一个角相等的情形:运用两点间的距离公式求出已
12、知角的两条夹边,看看是否成比例?若成比例,则相似;否则不相似。(2) 不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例?若成比例,则相似;否则不相似。一个定三角形和动三角形相似:(1) 已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来(一母示),然后把两个目标三角形(题中要相似的那两个三角形)中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例(要注意是否有两种情况),列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点。(2)不知道是否有一个角相等的情形:这种情形在相似性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 二次 函数 压轴 题解 题通法 重点中学 整理
限制150内