一元二次方程与二次函数综合题.docx
《一元二次方程与二次函数综合题.docx》由会员分享,可在线阅读,更多相关《一元二次方程与二次函数综合题.docx(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四讲 一元二次方程与二次函数第一部分 真题精讲【1】已知:关于的方程、求证:取任何实数时,方程总有实数根;、若二次函数的图象关于轴对称求二次函数的解析式;已知一次函数,证明:在实数范围内,对于的同一个值,这两个函数所对应的函数值均成立;、在条件下,若二次函数的图象经过点,且在实数范围内,对于的同一个值,这三个函数所对应的函数值,均成立,求二次函数的解析式【2】关于的一元二次方程.(1)当为何值时,方程有两个不相等的实数根;(2)点是抛物线上的点,求抛物线的解析式;(3)在(2)的条件下,若点与点关于抛物线的对称轴对称,是否存在与抛物线只交于点的直线,若存在,请求出直线的解析式;若不存在,请说
2、明理由.【3】已知P()与Q(1,)是抛物线上的两点(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值【4】已知抛物线,其中是常数(1)求抛物线的顶点坐标;(2)若,且抛物线与轴交于整数点(坐标为整数的点),求此抛物线的解析式【5】已知:关于的一元二次方程(为实数)(1)若方程有两个不相等的实数根,求的取值范围;(2)在(1)的条件下,求证:无论取何值,抛物线总过轴上的一个固定点;(3)若是整数,且关于的一元二次方程有两个不相等的整数根,把抛物线向右平移个单位
3、长度,求平移后的解析式第二部分 发散思考【思考1】已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围. 【思考2】已知:关于的一元二次方程(1)若求证:方程有两个不相等的实数根;(2)若12m40的整数,且方程有两个整数根,求的值【思考3】已知: 关于x的一元一次方程kx=x+2 的根为正实数,二次函数y=ax2bx+kc(c0)的图象与x轴一个交点的横坐标为1.(1)若方程的根为正整数,求整数k的值;(2)求代数式的值;(3)求证: 关于x的一元二次方程ax2bx+c=0 必有两个不相等的实数根.【思考4】. 已知:关于的一元二次方程(1)求证:不论取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根满足,求的值第 3 页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 二次 函数 综合
限制150内