高考数学(理)新课堂课件:9.5-几何概型(含答案).ppt
《高考数学(理)新课堂课件:9.5-几何概型(含答案).ppt》由会员分享,可在线阅读,更多相关《高考数学(理)新课堂课件:9.5-几何概型(含答案).ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第5讲,几何概型,1.几何概型 如果每个事件发生的概率只与构成该事件区域的长度(面 积或体积)成比例,那么称这样的概率模型为几何概率模型,简,称为_.,几何概型,2.几何概型中,事件 A 的概率计算公式,P(A),构成事件 A 的区域长度( 面积或体积) 全部结果所构成的区域长度( 面积或体积),3.要切实理解并掌握几何概型试验的两个基本特点,(1)无限性:在一次试验中,可能出现的结果有无限多个. (2)等可能性:每个结果的发生具有等可能性.,注意:在几何概型的试验中,事件 A 的概率 P(A)只与子 区域 A 的几何度量(长度、面积或体积)成正比,而与 A 的位置 和形状无关.,求试验中几何
2、概型的概率,关键是求得事件所占区域和,整个区域的几何度量,然后代入公式即可求解.,1.一只蚂蚁在如图 951 所示的地板砖(除颜色不同外,其 余全部相同)上爬来爬去,它最后随意停留在灰色地板砖上的概,率是(,),B,图 951,A.,1 4,B.,1 3,C.,1 5,D.,1 2,2.(2016 年湖北武汉调研)在两根相距 6 m 的木杆上系一根 绳子,并在绳子上挂一盏灯,则灯与两端距离都大于 2 m 的概,率为(,),B,A.,1 2,B.,1 3,C.,1 4,D.,1 6,解析:记“灯与两端距离都大于 2 m”为事件 A,则 P(A),面积不小于 的概率是(,3.在面积为 S 的ABC
3、 的边 AB 上任取一点 P,则PBC 的,S 3,),A.,2 3,B.,1 3,C.,3 4,D.,1 4,空间是线段 AB 的长度.如图 D77,取 AB 的三等 分点 P,如果在线段 BP 上取点,那么PBC 的,答案:A,图 D77,4.向面积为 S 的ABC 内任投一点 P,则PBC 的面积小,图D78,考点 1,与长度(或角度)有关的几何概型,例 1:(1)(2016 年新课标)某公司的班车在 7:00,8:00, 8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车, 且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的,概率是(,),A.,1 3,B
4、.,1 2,C.,2 3,D.,3 4, .故选 B.,解析:如图 D79,画出时间轴: 图 D79 小明到达的时间会随机地落在图中线段 AB 中,而当他的 到达时间落在线段 AC 或 DB 时,才能保证他等车的时间不超过,10 分钟,根据几何概型,得所求概率 p,1010 40,1 2,答案:B,间4,5上随机取一个数 x,则 xD 的概率是_. 解析:由 6xx2 0,即 x2x60,解得2x3,,3( 2) 5( 4),根据几何概型的概率计算公式得 xD 的概率是 5 . 9 5 答案: 9,(3)在区间2,3上随机选取一个数 x,则 x1 的概率为,(,),A.,4 5,B.,3 5,
5、C.,2 5,D.,1 5,解析:在区间2,3上符合 x1 的区间为2,1,因为区 间2,3的长度为 5,区间2,1的长度为 3,所以根据几何概 答案:B,【规律方法】应用几何概型求概率的步骤:,把每一次试验当作一个事件,看事件是否是等可能的且 事件的个数是否是无限个,若是,则考虑用几何概型; 将试验构成的区域和所求事件构成的区域转化为几何图,形,并加以度量;,将几何概型转化为长度、面积、体积之比,应用几何概,型的概率公式求概率.,考点 2,与面积(或体积)有关的几何概型,例 2:(1)(2017 年新课标)如图 952,正方形 ABCD 内 的图形来自中国古代的太极图.正方形内切圆中的黑色部
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 课堂 课件 9.5 几何 答案
限制150内