2022年复数的有关概念教案 .pdf
《2022年复数的有关概念教案 .pdf》由会员分享,可在线阅读,更多相关《2022年复数的有关概念教案 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学选修2-2 教案课题:5.2 复数的有关概念【教学目标】1. 进一步学习复数的有关概念,掌握复数相等的充要条件. 2. 理解复数的几何意义和复数的模,并应用其解决相关问题. 【教学重点】理解复数相等的充要条件,复数的几何意义和复数的模【教学难点】应用复数的几何意义和模解决相关问题【教法学法】引导探究、练习法、讨论法【授课课型】新授课【授课课时】1 课时【教具学具】三角板【教学过程设计】一、导入:复习回顾1定义: 形如 abi(a,bR)的数叫作复数,其中i 叫作虚数单位,满足i21. 2表示: 复数通常用字母z 表示,即 zabi(a,bR),这一表示形式叫作复数的代数形式, a 与
2、b 分别叫作复数z的实部与虚部3分类: 复数: abi(a,b R) 实数 b0虚数 b0纯虚数 a0非纯虚数a0二、知识梳理1、复数相等的充要条件设 a,b,c,d 都是实数,那么abicdi? ac 且 bd. 2、复平面当直角坐标平面用来表示复数时,我们称之为复平面,x轴为实轴, y 轴为虚轴。实轴上的点都表示实数;虚轴上的点除了原点外,都表示纯虚数3、复数的几何意义复数 za bi(a, bR)一一对应有序实数对(a,b)复数 za bi(a,bR)一一对应向量=( , )OZa b4、复数的模名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - -
3、 - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页 - - - - - - - - - 复数 zabi(a,bR)的模22|zab(复数不能比较大小,但模可以比较大小)三、题型讲解题型一:复数模的计算例 1:在复平面内表示下列复数,并分别求出它们的模(1)-2+3i (2)13+22i (3) 3-4i (4)-1-3i 变式训练1: 若|log3m4i|5,则实数 m_. 解析: 由 log23m1625,log23m9,log3m3 或 3,m27 或127. 变式训练2设 z 为纯虚数,且 |z1| |1i|,求复数z. 解析: 因为 z 为纯虚数,所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年复数的有关概念教案 2022 复数 有关 概念 教案
限制150内