2022年《双曲线的简单几何性质》教学设计 .pdf
《2022年《双曲线的简单几何性质》教学设计 .pdf》由会员分享,可在线阅读,更多相关《2022年《双曲线的简单几何性质》教学设计 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀教案双曲线的简单几何性质(一) 教学设计环县四中耿海龙一、教材分析1. 教材中的地位及作用本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。2.教学目标的确定及依据平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的基本几何性质,初步掌握根据曲线的方程,研究曲线的几何性
2、质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。(1)知识目标: 使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;掌握双曲线标准方程中cba,的几何意义,理解双曲线的渐近线的概念;能运用双曲线的几何性质解决双曲线的一些基本问题。(2)能力目标: 在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法及极限思想方法;使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。名师归纳总结 精品学习资料 - - -
3、- - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 名师精编优秀教案3. 重点、难点的确定及依据对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现(教科书在本节末的“探究与发现”栏目中,解释了“为什么byxa是双曲线22221xyab的渐近线”供学生阅读参考) 的接受、理解和掌握有一定的困难。 因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。并借助
4、多媒体用几何画板给学生动态演示了双曲线上点的移动过程,让学生直观感受了渐近线,学生也易接受。因此,我把渐近线的理解作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。4. 教学方法这节课内容是通过双曲线方程推导、研究双曲线的性质, 本节内容类似于 “椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有
5、利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。名师归纳总结 精品学习资料 - - - - - - - - -
6、- - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 名师精编优秀教案二、教学程序(一) . 设计思路复习椭圆的几何性质类比双曲线的几何性质特有的几何性质(从特殊到一般的规律探索)双曲线的渐近线的发现及理解加强应用深化知识、巩固提高(二) . 教学流程1. 复习引入我们已经学习过椭圆的标准方程和双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。2观察、类比这节课内容是
7、通过双曲线方程推导、研究双曲线的性质, 本节内容类似于 “椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,首先观察双曲线的形状,试着按照椭圆的几何性质,归纳总结出双曲线的几何性质。一般学生能用类似于推导椭圆的几何性质的方法得出双曲线的范围、对称性、顶点、离心率,对知识的理解不能浮于表面只会看图,也要会从方程的角度来解释,抓住方程的本质。用多媒体演示,加强学生对双曲线的简单几何性质范围、对称性、顶点(实轴、虚轴)、离心率(不深入的讲解)的巩固。之后,比较双曲线的这四个性质和椭圆的性质有何联系及区别,这样可以加强新旧知识的联系,借助于类比方法,引起学生学习的兴趣,激发求知欲。名
8、师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 7 页 - - - - - - - - - 名师精编优秀教案3. 双曲线的渐近线的发现、理解(1)发现由椭圆的几何性质,我们能较准确地画出椭圆的图形。那么,由双曲线的几何性质,能否较准确地画出双曲线122yx的图形为引例,让学生动笔实践,通过列表描点,就能把双曲线的顶点及附近的点较准确地画出来,但双曲线向远处如何伸展就不是很清楚。从而说明想要准确的画出双曲线的图形只有那四个性质是不行的。从学生曾经学习过的反比
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线的简单几何性质 2022年双曲线的简单几何性质教学设计 2022 双曲线 简单 几何 性质 教学 设计
限制150内