2022年七年级数学知识点总结 .pdf
《2022年七年级数学知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年七年级数学知识点总结 .pdf(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载七年级数学(七年级数学(下)重要知识点总结数学第一章:整式的运算一、单项式 :都是数字与字母的乘积的代数式叫做单项式。二、多项式 :几个单项式的和叫做多项式。三、整式 :单项式和多项式统称为整式。四、整式的加减 :整式加减的理论根据是: 去括号法则,合并同类项法则,以及乘法分配率。五、同底数幂的乘法 :同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即: a a =a 。六、 幂的乘方 : 幂的乘方运算法则:幂的乘方,底数不变,指数相乘。 )七、积的乘方 :1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的
2、幂相乘。即( ab) =a b 。3、此法则也可以逆用,即:a b =(ab) 。 。八、同底数幂的除法 :同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即: a a =a (a 0)十、零指数幂 :零指数幂的意义:任何不等于0 的数的 0 次幂都等于 1,即: a =1(a 0) 。十一、负指数幂 : 任何不等于零的数的 p 次幂,等于这个数的p 次幂的倒数,即:0 m n m-n n n n n n n m n m+n m n mn a? p = 1 ap (a 0) (一) 单项式与单项式相乘 : 单项式乘法法则:单项式与单项式相乘,名师归纳总结 精品学习资料 - - - - -
3、 - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 28 页 - - - - - - - - - 学习必备欢迎下载把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。(二)单项式与多项式相乘:单项式与多项式乘法法则:单项式与多项式相乘, 就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc 。(三)多项式与多项式相乘 :多项式与多项式乘法法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:
4、 (m+n)(a+b)=ma+mb+na+nb。十三、平方差公式 : (a+b)(a-b)=a -b ,即:两数和与这两数差的积,等于它们的平方之差。十四、完全平方公式( a + b) 2 2 2 = a 2 + 2ab + b 2 , (a ? b) 2 = a 2 ? 2ab + b 2 , 即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2 倍。 掌握理解完全平方公式的变形公式:a 2 + b 2 = ( a + b) 2 ? 2ab = ( a ? b) 2 + 2ab = 1 ( a + b) 2 + ( a ? b) 2 2 (a + b) 2 = (a ? b
5、) 2 + 4ab 完全平方公式可以逆用, 即: a 2 ab = 1 ( a + b) 2 ? ( a ? b) 2 4 + 2ab + b 2 = (a + b) 2 , a 2 ? 2ab + b 2 = (a ? b) 2 .十五、整式的除法(一)单项式除以单项式的法则:单项式除以单项式的法则: 一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母, 则连同它的指数一起作为商的一个因式。(二)多项式除以单项式的法则:多项式除以单项式的法则:多项式名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学
6、习资料 - - - - - - - - - - - - - - - 第 2 页,共 28 页 - - - - - - - - - 学习必备欢迎下载除以单项式,先把这个多项式 的 每 一 项 分 别 除 以 单 项式 , 再 把 所 得 的 商 相 加 。 用 字 母 表 示 为 : ( a + b + c ) m = a m + b m + c m.第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角, 那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、 余角和补角的性质:
7、同角或等角的余角相等,同角或等角的补角相等。二、对顶角1、两条直线相交成四个角, 其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角的两边的反向延长线, 这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。三、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了 8 个角。2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。四、平行线的判定方法1、同位角
8、相等,两直线平行。2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 28 页 - - - - - - - - - 学习必备欢迎下载线平行。平行线的性质1、两直线平行,同位角相等。2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。尺规作线段和角1、在几何里,
9、只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。第三章 生活中的数据一、单位换算1、长度单位 : (1)百万分之一米又称微米,即1 微米=10 米。 (2) 10 亿分之一米又称纳米, 即 1 纳米=10 米。 (3)1 微米=10 纳米。 (4)1 米=10 分米=100 厘米=10 毫米=10 微米=10 纳米。 2、面积单位 (1)10 千米 =1 米 =10 分米 =10 厘米=10 毫米 =10 微米 =10 纳米 。 3、 质量单位(1) 1 吨=10 千克=10 克。二、科学计数法表示绝对值小于1 的较小数据1、用科学计数法表示绝
10、对值小于1 的较小数据时,也可以表示为a 10 的形式,其中1 a10,n 为负 整数, n 等于这个数的第一个不为零的数字前面所有零的个数(包括小数点前面的一个零)的相反数。三、近似数与精确数1、精确数是指一个物体或描述一事件的真实数值。 2、 近似数是指用测量或统计的方法、四舍五入、估计等得到数。四、有效数字1、对于一个近似数,从左边第一个不为零的数字起,到 精确到的数位为止,所有的数字都叫这个数的有效数字。2、对于科学计数法型的近似数, 由 a 10(1 a10) 中的 a 来确定,a 的有效数字就是这个近似数的有效数字。与 10 无关。五、近似数的精确度1、近似数的精确度是近似数精确的
11、程度。2、名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 28 页 - - - - - - - - - 学习必备欢迎下载近似数四舍五入到哪一位, 就说这个近似数精确到哪一位。 3、精确度是由该近似数的最后一位有效数字在该数中所处的位置决定的。六、统计图(表) 1、条形统计图:能清楚地表示出每个项目的具体数目。 2、折线统计图:能清楚地反映事物的变化情况。 3、扇形统计图:能清楚地表示出各部分在总体中所占的百分比。4、象形统计图:能直观地反映数据之间的意义
12、。第四章 概率一、事件 :1、事件分为必然事件、不可能事件、不确定事件。2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或 1) 。3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。4、不 确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生, 也可能不发生,即发生的可能性在 0 和 1 之间。二、等可能性 :是指几种事件发生的可能性相等。1、概率:是反映事件发生的可能性的大小的量, 它是一 个比例数,一般用 P 来表示,P(A)=事件 A 可能出现的结果数 /所有可
13、能出现的结果数。2、必然事件发生的概率为1,记作 P(必然事件) =1;3、不可能事件发生的概率为 0,记作P(不可能事件)=0;4、不确定事件发生的概率在 01 之间,记作 0P(不确定事件) c,a+cb,b+ca ;a-bc,a-cb,b-cc,a+cb,b+ca 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。 3、确定第三边 (未知边)的取值范围时,名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 6 页,共 28 页 -
14、 - - - - - - - - 学习必备欢迎下载它的取值范围为大于两边的差而小于两边的和,三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于180 。 2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“Rt”表示“ 直角三角形”,其中直角 C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。(3)钝角三角形,即有一个内角是钝角的三角形。 3、判定一个三角形的形状主要看三角形中最大角的度数。4、直角三角形的面积
15、等于两直角边乘积的一半。四、三角形的三条重要线段1、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。(2) 任意三角形都有三条角平分线,并且它们相交于三角形内一点。3、三角形的中线:(1)在三角形中, 连接一个顶点与它对边中点的线段, 叫做这个三角形的中线。 (2)三角形有三条中线,它们相交于三角形内一点。4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线, 它们所在的直线相交于一点。区 中 线 平分对边 平分内角垂直于对
16、边 (或其延长线) 角平分线高 线 别 相同 三条中线交于三角形内部三条角平分线交于三角表内部锐角三角形:三条高线都在三角形内部直角三角形:其中两条恰好是直角名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 28 页 - - - - - - - - - 学习必备欢迎下载边 钝角三角形:其中两条在三角表外部(1)都是线段(2)都从顶点画出(3)所在直线相交于一点0 a ?b c a +b . 五、全等图形1、两个能够重合的图形称为全等图形。2、全等图形的性质
17、:全等图形的形状和大小都相同。六、 全等三角形1、 能够重合的两个三角形是全等三角形, 用符号 “ ”连接,读作 “ 全等于 ” 。 2、用“ ” 连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“ 边边边 ” 或“SSS ” 。 2、两角和它们的夹边对应相等的两个三角形全等,简写为 “ 角边角” 或“ASA ” 。 3、两角和其中一角的对边对应相等的两个三角形全等,简写为“ 角角边” 或“AAS ” 。 4、两边和它们的夹角对应相等的两个三角形全等,简写为“ 边角边 ” 或“SAS ” 。九、作三角形 ; 十、利用三角形全
18、等测距离; 十一、直角三角形全等的条件1、在直角三角形中, 斜边和一条直角边对应相等的两个直角三角形全等,简写成“ 斜边、直角边 ” 或“HL ” 。第六章 变量之间的关系一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。 2、如果一个变量y 随另一个变量x 的变化而变化, 则把x 叫做自变量, y 叫做因变量。变量是指在程序的运行过程中随时可以发生变化的量。在我们日常生活中普遍存在,笔者结合七年级数学教材(北师大版)浅谈几种表示变量之间关系的表示方法。简名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - -
19、- - - - - - - - - - - - - 第 8 页,共 28 页 - - - - - - - - - 学习必备欢迎下载单地说:一个变化过程中数值始终保持不变的量叫做常量,反之,可以取不同数值的就叫做变量。而变量包括自变量和因变量。自变量即能够影响其他变量的一个变量,或者说因为自己改变导致其它的变量也随之而变化的量。 因变量则为受其它变量改变后而随之影响变化的变量。例如,计算圆的面积公式 S= 中,圆周率常量,圆的面积随着圆的半径的变化而变化,就是变量。圆的半径是自变量,圆的面 积是因变量。同理,在一个变化过程中有两个量x 和 y,对于 x 的每一个值, y 都有唯一的值与它对应,那
20、么 x 是自变量, y 是因变量。一.列表法 。 列表法。采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出, 再分别求出因变量的对应值。 列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。例 1:在全国抗击 “ 非典” 的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素。据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:时间 0 (分钟) 含药量 0 (微克)
21、(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当注射药液60 分钟后血液中含药量是多少?(3)据临床观察:每毫升血液中含药量不少于4 微克时,控制 “ 非典” 病情是有效的。如果病人按规定的剂量注射该药液后,那么这一名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 9 页,共 28 页 - - - - - - - - - 学习必备欢迎下载次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长? 【分析】从这个表中可以看出两个量都是变量
22、,且血液中的含药量随着注射药液的时间的变化而变化。因分析】 此,注射药液的时间是自变量, 血液中的含药量是因变量。 从这两个变量之间的关系的表格中可以得到,注射药液的时间与血液中的含药量的多少一一对应,知道注射药液的时间即可找到血液中的含药量,反之,2 4 6 5.7 5.2 4.8 4.4 4 3.6 3.2 2.8 2.4 2 20 40 60 80 100 120 140 160 180 200 220 240 260 2 知道血液中的含药量即可找到注射药液所对应的时间。而要找到控制病情的有效时间有多长?关键要观察出表内注射药液的时间与血液中含药量的变化规律:注射药液后的开始60 分钟内
23、血液中的含药量是由0 微克上升至6 微克,60 分钟以后,血液中的含药量是逐渐下降,只要找出开始上升至4 微克的时间和下降至4 微克的时间,两者的时间差即是控制病情的有效时间。【解答】 (1)上表反映了注射药液的时间和血液中的含药量这两个变量之间的关系,自变量是注射药液的解答】(1 】( 时间, 因变量是血液中的含药量。 (2) 当注射药液60 分钟后血液中含药量是6 微克。(3)据临床观察:每毫升血液中含药量不少于4 微克时,控制 “ 非典” 病情是有效的。如果病人按规定的 剂量注射该药液后,那么这一次注射的药液经过40 分钟后控制病情开始有效,这个有效时间是120 分钟 (从 表格中可以看
24、出:当注射药液达到40 分钟时,血液中的含药量上升到4 微克,之后继续上升至最高值为6 微克,然后缓慢下降, 当注射药液160 分钟名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 10 页,共 28 页 - - - - - - - - - 学习必备欢迎下载后,血液中的含药量下降至4 微克,所以,如果按规定的剂量注射该药液后需要经过40 分钟控制病情开始有效,这个有效时间为160 分钟40 分钟=120 分钟) 。二.关系式法 。 关系式法。关系式是利用数学式子来表示
25、变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。已知梯形上底的长是x,下底的长是15,高是 8,梯形面积为 y。 (原题见课本197 页数学理解第例 2: 已知 1 题) (1) 梯形面积y 与上底长 x 之间的关系式是什么?(2)用表格表示当x 从 10 变到20 时(每次增加1) ,y 的相应值; (3) 当 x 每增加 1 时,y 如何变化?说说你的理由;(4) 当 x 0 时,y 等于什么?此时它表示的什么?【分析】根据题意及其梯形的面积公式S= (a+b)h/2 可以得到: 分析】 梯形的下底b 和高 h 都是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年七年级数学知识点总结 2022 七年 级数 知识点 总结
限制150内