分式方程的增根及无解(11页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《分式方程的增根及无解(11页).doc》由会员分享,可在线阅读,更多相关《分式方程的增根及无解(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-分式方程的增根及无解-第 11 页分式方程的增根与无解 甲:增根是什么?乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如例1、解方程:。为了去分母,方程两边乘以,得由解得。甲:原方程的解是。乙:可是当时,原方程两边的值相等吗?甲:这我可没注意,检验一下不就知道了。哟!当时,原方程有的项的分母为0,没有意义,是不是方程变形过程中搞错啦?乙:求解过程完全正确,没有任何的差错。甲:那为什么会出现这种情况呢?乙:因为原来方程中未知数x的取值范围是且,而去分母化为整式方程后,未知数x的取值范围扩大为全体实数。这样,从方程解出的未知数的
2、值就有可能不是方程的解。甲:如此说来,从方程变形为方程,这种变形并不能保证两个方程的解相同,那么,如何知道从整式方程解出的未知数的值是或不是原方程的解呢?乙:很简单,两个字:检验。可以把方程解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是否使公分母等于0,如果公分母为0,则说明这个值是增根,否则就是原方程的解。甲:那么,这个题中就是增根了,可原方程的解又是什么呢?乙:原方程无解。甲:啊?!为什么会无解呢?乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程两边的值相等,因此原方程无解,又如对于方程,不论x取何值也不能
3、使它成立,因此,这个方程也无解。甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢?乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看:例2、解方程,去分母后化为,解得或,此时,是增根,但原方程并不是无解,而是有一个解,而方程,去分母后化为,原方程虽然无解,但原方程也没有增根。乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系可以解决分式方程的有关问题,你看:例3、已知关于x的方程有增根,求k的值。首先把原方程去分母,化为。因为原方程的最简公分母是,所以方程的增根可能是或若增根为,代入方程,得,;若增根为,代入方程,得,。故当或时
4、,原方程会有增根。甲:虽然无解的分式方程不一定有增根,有增根的分式方程不一定无解,但我还觉得无解与增根之间似乎有种微妙的关系,这是怎么一回事?乙:你说的没错,增根与无解都是分式方程的“常客”,它们虽然还没有达到形影不离的程度,但两者还是常常相伴而行的,在有些分式方程问题中,讨论无解的情形时应考虑增根,例如:例4、已知关于x的方程无解,求m的值。先把原方程化为。(1)若方程无解,则原方程也无解,方程化为,当,而时,方程无解,此时。(2)若方程有解,而这个解又恰好是原方程的增根,这时原方程也无解,所以,当方程的解为时原方程无解,代入方程,得,故。综合(1)、(2),当或时,原方程无解。妙用分式方程
5、的增根解题在解分式方程的过程中,我们还可以利用增根来求分式方程中的待定字母的值.请看下面几例.例1 若关于的方程有增根,则的值为_.析解:去分母并整理,得,因为原方程有增根,增根只能是,将代入去分母后的整式方程,得.例2 若关于的方程无解,则的值是_.析解:去分母并整理,得.解之,得.因为原方程无解,所以为方程的增根.又由于原方程的增根为.所以,.例3. 已知方程2有增根,则_.析解:把原方程化成整式方程,得因为原方程有增根,所以增根只能是或.将代入,得;将代入,无解.故应填.练一练:1. 如果分式方程无解,则的值为( ).(A)1 (B)0 (C)1 (D)22. 如果方程有增根,则_.答案
6、:;分式方程的增根及其应用一、增根的原因解分式方程时,有时会产生增根,这是因为我们把分式方程转化为整式方程过程中,无形中取掉了原分式方程中分母不为零的限制条件,从而扩大了未知数的取值范围,于是就产生了如下两种情况:(1)如果整式方程的根都在分式方程未知数的取值范围内,那么整式方程的根就是分式方程的根;(2)如果整式方程的有些根不在分式方程未知数的取值范围内,那么这种根就不是分式方程的根,是分式方程的增根因此,解分式方程时,验根是必不可少的步骤二、利用增根解题不可否认,增根的出现给我们的解题带来了一定的麻烦,然而任何事物都有其两面性,由增根的原因知道,分式方程的增根一定是所化成的整式方程的根,同
7、时还能使其最简公分母的值为零,据此可以解决一些相关的问题,常见的类型有如下几种:1已知方程有增根,确定字母系数值例1:若方程有增根,则m的值为 ( )A 3 B3 C0 D以上都不对析解:把分式方程两边同乘以公分母x3,得整式方程x2(x3)=m若原方程有增根,必须使公分母x3等于0,即x=3,代入整式方程得3=6 m,解得m=3故应选B点评:方程有增根,一定是公分母等于0的未知数的值解这类题的一般步骤把分式方程化成的整式方程;令公分母为0,求出x的值;再把x的值代入整式方程,求出字母系数的值2已知方程无解,确定字母系数值例2:若方程无解,则m的值为 ( )A 1 B3 C1 或3 D1 或分
8、析:把分式方程化为整式方程,若整式方程无解,则分式方程一定无解;若整式方程有解,但要使分式方程无解,则该解必为使公分母为0时对应的未知数的值,此时相应的字母系数值使分式方程无解解:去分母,得(32x)(2+mx)=3x,整理,得(m+1) x=2若m+1=0,则m= 1,此时方程无解;若m+10,则x=是增根因为=3,所以m=所以m的值为1 或,故应选D点评:方程无解的条件,关键是看转化后的整式方程解的情况既要考虑整式方程无解的条件,又要考虑整式方程有解,但它是分式方程增根的可能性,考虑问题要全面、周到3已知方程无增根,确定字母系数值例3:若解关于x的方程不会产生增根,则k的值为 ( )A2
9、B1 C不为2的数 D无法确定析解:去分母,把分式方程化为整式方程,x(x+1)k=x(x1),解关于k的方程,得k=2x.由题意, 分式方程无增根,则公分母x210,即x1,则k2故应选C点评:方程无增根,就意味着对应的整式方程的根使分式方程的公分母不等于0,利用这一点可以确定字母系数值或取值范围妙用分式方程的增根求参数值解分式方程时,常通过适当变形化去分母,转化为整式方程来解,若整式方程的根使分式方程中的至少一个分母为零,则是增根,应舍去,由此定义可知:增根有两个性质:(1)增根是去分母后所得整式方程的根;(2)增根是使原分式方程分母为零的未知数的值,灵活运用这两个性质,可简捷地确定分式方
10、程中的参数(字母)值,请看下面例示:一、 分式方程有增根,求参数值例1 a为何值时,关于x的方程=0有增根?分析:先将原分式方程转化为整式方程,然后运用增根的两个性质将增根代入整式方程可求a的值解:原方程两边同乘以(x-3)去分母整理,得x2-4x+a=0()因为分式方程有增根,增根为x=3,把x=3代入()得,9-12+a=0 a=3所以a=3时,=0有增根。 点评:运用增根的性质将所求问题转化为求值问题,简捷地确定出分式方程中的参数(字母)值例2 m为何值时,关于x的方程+=有增根。分析:原分式方程有增根,应是使分母为0的x值。将这样的x值代入去分母的整式方程可求出m的值。解:原方程两边同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 方程 11
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内