圆锥曲线中的定值定点问题(7页).doc
《圆锥曲线中的定值定点问题(7页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线中的定值定点问题(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-2019届高二文科数学新课改试验学案(10)-圆锥曲线中的定值定点问题1.已知椭圆 的离心率为,点在C上.(I)求C的方程;(II)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M, 证明:直线OM的斜率与直线l的斜率乘积为定值.2.已知椭圆C:过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;()设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N, 求证:四边形ABNM的面积为定值.3.椭圆的离心率为,其左焦点到点的距离为(I)求椭圆的标准方程()若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆 过椭圆的右顶
2、点。求证:直线过定点,并求出该定点的坐标.答案1.【答案】(I)(II)见试题解析试题解析:【名师点睛】本题第一问求椭圆方程的关键是列出关于的两个方程,通过解方程组求出,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.2.从而四边形的面积为定值【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3.解:(1),设左焦点,解得 椭圆方程为(2)由(1)可知椭圆右顶点设,以为直径的圆过即 联立直线与椭圆方程: ,代入到或当时, 恒过当时, 恒过,但为椭圆右顶点,不符题意,故舍去恒过3.-第 7 页-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 中的 定点 问题
限制150内