初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)(26页).doc
《初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)(26页).doc》由会员分享,可在线阅读,更多相关《初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)(26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)-第 26 页初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等:平行四边形的对角线互相平分。 3平行四边形的判定:.两组对边分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形。 4、矩形的定义:有一个角是直角的平行四边形。5、矩形的性质:矩形的四个角都是直角;矩形的对角线相等。6、矩形判定定理: 有三个角是直
2、角的四边形是矩形;对角线相等的平行四边形是矩形。7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。(连接三角形两边中点的线段叫做三角形的中位线。)8、菱形的定义 :有一组邻边相等的平行四边形。9、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。S菱形=1/2ab(a、b为两条对角线长)10、菱形的判定定理:四条边相等的四边形是菱形。 对角线互相垂直的平行四边形是菱形。 11、正方形定义:一个角是直角的菱形或邻边相等的矩形。12正方形判定定理: 邻边相等的矩形是正方形。 有一个角是直角的菱形是正
3、方形。 (矩形+菱形=正方形)常考题:一选择题(共14小题)1矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等2平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()AAB=BCBAC=BDCACBDDABBD3如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90时,它是矩形D当AC=BD时,它是正方形4顺次连接任意四边形四边中点所得的四边形一定是()A平行四边形B矩形C菱形D正方形5在平面直角坐标系中,平行四
4、边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A(3,7)B(5,3)C(7,3)D(8,2)6如图,ABCD的对角线AC与BD相交于点O,ABAC,若AB=4,AC=6,则BD的长是()A8B9C10D117如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2,DE=6,EFB=60,则矩形ABCD的面积是()A12B24C12D168如图,在菱形ABCD中,BAD=80,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则CDF等于()A50B60C70D809如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC
5、于点E若BF=6,AB=5,则AE的长为()A4B6C8D1010如图,菱形ABCD中,B=60,AB=4,则以AC为边长的正方形ACEF的周长为()A14B15C16D1711如图,在平行四边形ABCD中,AB=4,BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DGAE,垂足为G,若DG=1,则AE的边长为()A2B4C4D812如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A16B17C18D1913如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE=22.5,EFAB,垂足为F,则EF的长为(
6、)A1BC42D3414如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则BFC为()A45B55C60D75二填空题(共13小题)15已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为 cm216如图,在ABCD中,BE平分ABC,BC=6,DE=2,则ABCD的周长等于 17如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,OAB的周长是18厘米,则EF= 厘米18如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为 19如图,在
7、平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0),点D在y轴上,则点C的坐标是 20如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E若CBF=20,则AED等于 度21如图,ABCD中,ABC=60,E、F分别在CD和BC的延长线上,AEBD,EFBC,EF=,则AB的长是 22如图所示,菱形ABCD的边长为4,且AEBC于E,AFCD于F,B=60,则菱形的面积为 23如图,D是ABC内一点,BDCD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 24如图,在平面直角坐标系中,O为坐
8、标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点若POD为等腰三角形,则所有满足条件的点P的坐标为 25如图,已知ABC的三个顶点的坐标分别为A(2,0),B(1,2),C(2,0)请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标 26如图,在菱形ABCD中,AB=4cm,ADC=120,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒DEF为等边三角形,则t的值为 27如图,四边形ABCD中,A=90,AB=3,AD=3,点M,N分别为线段BC,AB上的动
9、点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 三解答题(共13小题)28如图,已知:ABCD,BEAD,垂足为点E,CFAD,垂足为点F,并且AE=DF求证:四边形BECF是平行四边形29已知:如图,在ABC中,AB=AC,ADBC,垂足为点D,AN是ABC外角CAM的平分线,CEAN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明30如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD及等边ABE已知BAC=30,EFAB,垂足为F,连接DF(1)试说明AC=EF;(2)求证
10、:四边形ADFE是平行四边形31如图,矩形ABCD中,AC与BD交于点O,BEAC,CFBD,垂足分别为E,F求证:BE=CF32如图,在ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF(1)线段BD与CD有什么数量关系,并说明理由;(2)当ABC满足什么条件时,四边形AFBD是矩形?并说明理由33如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120,求菱形BCFE的面积34如图,在正方形ABCD中,E是AB上一点,F
11、是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且GCE=45,则GE=BE+GD成立吗?为什么?35如图,在ABC中,点O是AC边上的一个动点,过点O作直线MNBC,设MN交BCA的角平分线于点E,交BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论36如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分HEF求证:(1)AEHCGF;(2)四边形EFGH是菱形37如图,四边形ABCD中,ADBC,BAAD,BC=DC,BECD于点E(
12、1)求证:ABDEBD;(2)过点E作EFDA,交BD于点F,连接AF求证:四边形AFED是菱形38如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:BCPDCP;(2)求证:DPE=ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图),若ABC=58,则DPE= 度39在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图
13、3,请你求出CF的长40数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点AEF=90,且EF交正方形外角DCG的平分线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AMEECF,所以AE=EF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的
14、任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一选择题(共14小题)1(2013宜宾)矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相
15、等,故本选项错误故选B【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键2(2014河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()AAB=BCBAC=BDCACBDDABBD【分析】根据对角线相等的平行四边形是矩形判断【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断故选B【点评】本题主要考查的是矩形的判定定理但需要注意的是本题的知识点是关于各个图
16、形的性质以及判定3(2008扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A当AB=BC时,它是菱形B当ACBD时,它是菱形C当ABC=90时,它是矩形D当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、四边形ABCD是平行四边形,BO=OD,ACBD,AB2=BO2+AO2,AD2=DO2+AO2,AB=AD,四边形ABCD是菱形,故
17、B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错4(2011张家界)顺次连接任意四边形四边中点所得的四边形一定是()A平行四边形B矩形C菱形D正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等所以是平行四边形【解答】解:连接BD,已知任意四
18、边形ABCD,E、F、G、H分别是各边中点在ABD中,E、H是AB、AD中点,EHBD,EH=BD在BCD中,G、F是DC、BC中点,GFBD,GF=BD,EH=GF,EHGF,四边形EFGH为平行四边形故选:A【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半5(2006南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A(3,7)B(5,3)C(7,3)D(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点
19、横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3)【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),AB在x轴上,点C与点D的纵坐标相等,都为3,又D点相对于A点横坐标移动了20=2,C点横坐标为2+5=7,即顶点C的坐标(7,3)故选:C【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高6(2014河南)如图,ABCD的对角线AC与BD相交于点O,ABAC,若AB
20、=4,AC=6,则BD的长是()A8B9C10D11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长【解答】解:ABCD的对角线AC与BD相交于点O,BO=DO,AO=CO,ABAC,AB=4,AC=6,BO=5,BD=2BO=10,故选:C【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单7(2013南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2,DE=6,EFB=60,则矩形ABCD的面积是()A12B24C12D16【分析】在矩形ABCD中根据ADBC得出DEF=EFB=60,由于把矩形ABCD沿EF翻折点B恰
21、好落在AD边的B处,所以EFB=DEF=60,B=ABF=90,A=A=90,AE=AE=2,AB=AB,在EFB中可知DEF=EFB=EBF=60故EFB是等边三角形,由此可得出ABE=9060=30,根据直角三角形的性质得出AB=AB=2,然后根据矩形的面积公式列式计算即可得解【解答】解:在矩形ABCD中,ADBC,DEF=EFB=60,把矩形ABCD沿EF翻折点B恰好落在AD边的B处,DEF=EFB=60,B=ABF=90,A=A=90,AE=AE=2,AB=AB,在EFB中,DEF=EFB=EBF=60EFB是等边三角形,RtAEB中,ABE=9060=30,BE=2AE,而AE=2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 平行四边形 所有 知识点 总结 考题 提高 难题 压轴 练习 答案 解析 26
限制150内