初中数学竞赛专题选讲 一元二次方程的根(含答案)(7页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初中数学竞赛专题选讲 一元二次方程的根(含答案)(7页).doc》由会员分享,可在线阅读,更多相关《初中数学竞赛专题选讲 一元二次方程的根(含答案)(7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初中数学竞赛专题选讲 一元二次方程的根(含答案)-第 7 页初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax2+bx+c=0(a0)的实数根,是由它的系数a,b,c的值确定的.根公式是:x=.(b24ac0)2. 根的判别式 实系数方程ax2+bx+c=0(a0)有实数根的充分必要条件是:b24ac0. 有理系数方程ax2+bx+c=0(a0)有有理数根的判定是:b24ac是完全平方式方程有有理数根.整系数方程x2+px+q=0有两个整数根p24q是整数的平方数.3. 设x1,x2 是ax2+bx+c=0的两个实数根,那么 ax12+bx1+c=0(a0,
2、b24ac0), ax22+bx2+c=0(a0, b24ac0); x1=,x2=(a0,b24ac0); 韦达定理:x1+x2= , x1x2= (a0,b24ac0).4. 方程整数根的其他条件整系数方程ax2+bx+c=0(a0)有一个整数根x1的必要条件是:x1是c的因数.特殊的例子有:C=0x1=0 , a+b+c=0x1=1 , ab+c=0x1=1.二、例题例1. 已知:a,b,c是实数,且a=b+c+1.求证:两个方程x2+x+b=0与x2+ax+c=0中,至少有一个方程有两个不相等的实数根. 证明(用反证法)设两个方程都没有两个不相等的实数根,那么10和20.即由得b ,b
3、+1 代入,得ac=b+1,4c4a5 :a24a+50,即(a2)2+10,这是不能成立的.既然10和20不能成立的,那么必有一个是大于0.方程x2+x+b=0与x2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当120时,则1和2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a1)x2(a2+2)x+(a2+2a)=0和 (b1)x2(b2+2)x+(b2+2b)=0 (其中a,b为正整数)有一个公共根.求a,b的值.解:用因式分解法求得:方程的两个根是a和;方程两根是b和.由已知a1,b1且ab.公共根是a= 或b=.两个等式去分母后的结果是一样
4、的.即aba=b+2, abab+1=3, (a1)(b1)=3. a,b都是正整数,;或.解得;或.又解:设公共根为x0那么先消去二次项:(b1)(a1)得(a2+2)(b1)+(b2+2)(a1)x0+(a2+2a)(b1)(b2+2b)(a1)=0.整理得(ab)(abab2)(x01)=0.abx01;或(abab2)0.当x01时,由方程得a=1,a1=0,方程不是二次方程.x0不是公共根.当(abab2)0时,得(a1)(b1)=3解法同上.例3.已知:m,n 是不相等的实数,方程x2+mx+n=0的两根差与方程y2+ny+m=0的两根差相等.求:m+n的值. 解:方程两根差是同理
5、方程两根差是依题意,得.两边平方得:m24n=n24m. (mn)(m+n+4)=0mn,m+n+40,m+n4.例4.若a,b,c都是奇数,则二次方程ax2+bx+c=0(a0)没有有理数根.证明:设方程有一个有理数根(m,n 是互质的整数).那么a()2+b()+c=0,即an2+bmn+cm2=0.把m,n按奇数、偶数分类讨论,m,n互质,不可能同为偶数.当m,n同为奇数时,则an2+bmn+cm2是奇数奇数奇数奇数0;当m为奇数,n为偶数时,an2+bmn+cm2是偶数偶数奇数奇数0; 当m为偶数,n为奇数时,an2+bmn+cm2是奇数偶数偶数奇数0.综上所述不论m,n取什么整数,方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学竞赛专题选讲 一元二次方程的根含答案7页 初中 数学 竞赛 专题 一元 二次方程 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内