初中数学直线与圆的位置关系教案(8页).doc





《初中数学直线与圆的位置关系教案(8页).doc》由会员分享,可在线阅读,更多相关《初中数学直线与圆的位置关系教案(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初中数学直线与圆的位置关系教案直线与圆的位置关系教学目标1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性.重点、难点教学重点:直线与圆的位置关系的几何图形及其判断方法.教学难点:用坐标法判断直线与圆的位置关系.考点及考试要求教 学 内 容 4.2.1 直线与圆的位置关系整体设计教学分析 中学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中
2、几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质.课时安排:2课时教学过程第1课时导入新课思路1.平
3、面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点比较广泛,直线方程和圆的方程的建立、直线与圆的位置关系等也是必考内容,本节主要学习直线与圆的关系.思路2.(复习导入)(1) 直线方程:Ax+By+C=0(A,B不同时为零).(2) 点到直线的距离公式:(2)圆的标准方程:(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r.(3)圆的一般方程:x2+y2+Dx+Ey+F=0(其中D2+E2-4F0),圆心为(-,-),半径为.推进新课新知探究提出问题初中学过的平面几何中,直线与圆的位置关系有几种?我们怎样判断直线与圆的位置关系呢?如何结合解析几何
4、的相关知识深化(数字化)初中的判定方法?如何用直线与圆的方程判断它们之间的位置关系呢?阐述方程的解与图形上点的坐标的关系。判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.直线与圆的三种位置关系的含义是-几何法判断:直线与圆的位置关系公共点个数圆心到直线的距离d与半径r的关系图形相交两个dr相切只有一个d=r相离没有dr:判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;直线与圆的位置关系的判断方法:几何方法步骤:1把直线方程化为一般式,求出圆心和半径.2利用点到直线的距离公式
5、求圆心到直线的距离.3作判断:当dr时,直线与圆相离;当d=r时,直线与圆相切;当dr时,直线与圆相交.代数方法步骤:1将直线方程与圆的方程联立成方程组.2利用消元法,得到关于另一个元的一元二次方程.3求出其判别式的值.4比较与0的大小关系,若0,则直线与圆相离;若=0,则直线与圆相切;若0,则直线与圆相交.反之也成立.应用示例例1 已知直线l:3x+y-6=0和圆C的方程:x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,
6、就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l与圆的方程,得消去y,得x2-3x+2=0,因为=(-3)2-412=10,所以直线l与圆相交,有两个公共点.解法二:圆x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心C的坐标为(0,1),半径长为,圆心C到直线l的距离d=.所以直线l与圆相交,有两个公共点.由x2-3x+2=0,得x1=2,x21=2代入方程,得y1=0;把x2=1代入方程,得y2=3.所以直线l与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看
7、出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x2+y2=2,直线y=x+b,当b为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b为何值时,方程组有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有
8、公共点的问题,可转化为b为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l:y=x+b和圆x2+y2=2有两个公共点、只有一个公共点、没有公共点,则方程组有两个不同解、有两个相同解、没有实数解,消去y,得2x2+2bx+b2-2=0,所以=(2b)2-42(b2-2)=16-4b2.所以,当=16-4b20,即-2b2时,圆与直线有两个公共点;当=16-4b2=0,即b=2时,圆与直线只有一个公共点;当=16-4b20,即b2或b-2时,圆与直线没有公共点.解法二:圆x2+y2=2的圆心的坐标为(0,0),半径长为2,圆心到直线l:y=x+b的距离d=.当dr时,即,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 直线 位置 关系 教案

限制150内