奥数专题平面图形之圆的面积(12页).doc
《奥数专题平面图形之圆的面积(12页).doc》由会员分享,可在线阅读,更多相关《奥数专题平面图形之圆的面积(12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-平面图形面积圆的面积专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的,而在圆内的最大正方形占所在圆的面积的,这些知识点都应该常记于心,并牢牢掌握!例题1。求图中阴影部分的面积(单位:厘米)。【分析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。 623.141/428.26(平方厘米). 练习11.求下面各个图形中阴影部分的面积(单位:厘米)。2.求下面各个图形中阴影部分的面积(单位:厘米)。
2、例题2。求图中阴影部分的面积(单位:厘米)。【分析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。 从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。 3.14421/444228.56(平方厘米)练习21、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。1 2. 1 11例题3。如图1910所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。【分析】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积
3、的一半(如图1910右图所示)。所以 3.14121/421.57(平方厘米). 练习31、 如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。2、 如图所示,ABBC8厘米,求阴影部分的面积。 例题4。如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,ABC30度,求阴影部分的面积(得数保留两位小数)。【分析】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。半径:422(厘米) 扇形的圆心角:180(180302)60(度) 扇形的面积:223
4、.1460/3602.09(平方厘米) 三角形BOC的面积:7221.75(平方厘米) 7(2.09+1.75)3.16(平方厘米)练习41、如图,三角形ABC的面积是31.2平方厘米,圆的直径AC6厘米,BD:DC3:1。求阴影部分的面积。 2、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。 3、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。 1 2 3例题5。如图所示,求图中阴影部分的面积。【分析】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20210厘米【3.14
5、1021/410(102)】2107(平方厘米). 解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。 (202)21/2(202)21/2107(平方厘米) . 练习51、 如图所示,求阴影部分的面积(单位:厘米)2、如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?. 例题6如图所示,求图中阴影部分的面积(单位:厘米)。【分析】解法一:先用长方形的面
6、积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。 3.14621/4(643.14421/4)16.82(平方厘米). 解法二:把阴影部分看作(1)和(2)两部分如图208所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。 3.14421/4+3.14621/44616.28(平方厘米)练习61、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。 2、 如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 平面 图形 面积 12
限制150内