大学微积分l知识点总结(二)(23页).doc
《大学微积分l知识点总结(二)(23页).doc》由会员分享,可在线阅读,更多相关《大学微积分l知识点总结(二)(23页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-【第五部分】不定积分1.书本知识(包含一些补充知识)(1)原函数:F(x)=f(x),xI,则称F(x)是f(x)的一个“原函数”。(2)若F(x)是f(x)在区间上的一个原函数,则f(x)在区间上的全体函数为F(x)+c(其中c为常数)(3)基本积分表 (1,为常数)(4)零函数的所有原函数都是c(5)C代表所有的常数函数数乘运算(6)运算法则线性运算加减运算(7)(8) (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。(10)不定积分的计算方法凑微分法(第一换元法),利用复合函数的求导法则变量代换法(第二换元法),利用一阶微分形式不变性分部积分法:【
2、解释:一阶微分形式不变性】释义:函数对应:y=f(u)说明:(11)(12) 分段函数的积分例题说明:(13) 在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一(16)隐函数求不定积分例题说明:(17)三角有理函数积分的万能变换公式(18)某些无理函数的不定积分欧拉变换(19) 其他形式的不定积分2.补充知识(课外补充) 【例谈不定积分的计算方法】 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总1、不定积分的定义及一般积分方法(1)定义:若函数f(x)在区间I上连续,则f(x)在区间I上存在原函数。其中(x)=F(x)+c0,(c0为某个常数),则(
3、x)=F(x)+c0属于函数族F(x)+c(2)一般积分方法值得注意的问题: 第一,一般积分方法并不一定是最简便的方法,要注意综合使用各种积分方法,简便计算;第二,初等函数的原函数并不一定是初等函数,因此不一定都能够积出。 不能用普通方法积出的积分:2、特殊类型不定积分求解方法汇总(1)多次分部积分的规律(3)简单无理函数的积分被积函数为简单式的有理式,可以通过根式代换化为有理函数的积分小结:几分钟含有根号,应当考虑采用合适的方法去掉根号再进行计算。【第六部分】定积分1.书本知识(包含一些补充知识)(1)定义(12) 几种简化定积分的计算方法关于原点对称区间上的函数的定积分当f(x)为偶函数当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 微积分 知识点 总结 23
限制150内