高中数学-二项分布及其应用学案-新人教A版选修2-3.doc
《高中数学-二项分布及其应用学案-新人教A版选修2-3.doc》由会员分享,可在线阅读,更多相关《高中数学-二项分布及其应用学案-新人教A版选修2-3.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二项分布及其应用导学目标: 1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题自主梳理1条件概率及其性质(1)设A,B为两个事件,且P(A)0,称P(B|A)为在事件A发生的条件下,事件B发生的条件概率(2)条件概率具有的性质:_;如果B和C是两个互斥事件,则P(BC|A)_.2相互独立事件(1)设A,B为两个事件,若P(AB)P(A)P(B),则称事件A与事件B_.(2)若A与B相互独立,则P(B|A)_,P(AB)_.(3)若A与B相互独立,则_,_,_也都相互独立(4)若P(AB)P(A)P(B),则_3二项分布(1)独立重复
2、试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(Xk)Cpk(1p)nk,k0,1,2,n.此时称随机变量X服从二项分布记作_自我检测1两人独立地破译一个密码,他们能译出的概率分别为,则密码被译出的概率为()A0.45 B0.05 C0.4 D0.62(2011三明月考)一学生通过一种英语听力测试的概率是,他连续测试两次,那么其中恰有一次通过的概率是()A. B. C. D.3已知随机变量X服
3、从二项分布XB,则P(X2)等于()A. B. C. D.4已知P(AB),P(A),则P(B|A)等于()A. B. C. D.5(2011临沂调研)一次测量中出现正误差和负误差的概率都是,在5次测量中至少3次出现正误差的概率是()A. B. C. D.探究点一条件概率例1在100件产品中有95件合格品,5件不合格品现从中不放回地取两次,每次任取一件试求:(1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率变式迁移11号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1
4、号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?探究点二相互独立事件例2(2011宁波模拟)甲、乙两名射击运动员,分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求(1)两人都射中的概率;(2)两人中恰有一人射中的概率;(3)两人中至少一人射中的概率;(4)两人中至多一人射中的概率变式迁移2甲、乙、丙三人分别独立做一道题,甲做对的概率是,三人都做对的概率是,三人全做错的概率是.(1)求乙、丙两人各自做对这道题的概率;(2)求甲、乙、丙三人恰有一人做对这道题的概率探究点三独立重复试验与二项分布例3(2010天津汉沽一中月考)将一个半
5、径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(1)求小球落入A袋中的概率P(A);(2)在容器入口处依次放入4个小球,记为落入A袋中小球的个数,试求3的概率变式迁移3粒子A位于数轴x0处,粒子B位于数轴x2处,这两颗粒子每隔1秒钟向左或向右移动一个单位,设向右移动的概率为,向左移动的概率为.(1)求4秒后,粒子A在点x2处的概率;(2)求2秒后,粒子A、B同时在x2处的概率1一般地,每一个随机试验都在一定的条件下进行,而这里所说的条件概率,则是当试验结果的一部
6、分信息已知(即在原随机试验的基础上,再加上一定的条件),求另一事件在此条件下发生的概率求条件概率,必须理解条件概率的定义及公式,公式中的P(AB)是指事件A、B同时发生的概率2一般地,事件A是否发生对事件B发生的概率没有影响,即P(B|A)P(B),这时,我们称两个事件A、B相互独立,并把这两个事件叫做相互独立事件事件的独立是一种对等的性质如果事件A对事件B独立,那么就可以说事件A与B相互独立显然,必然事件与任何事件是相互独立的3独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的4独立重复试验概率公式的特点:关于Pn(k)Cpk(1p)nk,
7、它是n次独立重复试验中某事件A恰好发生k次的概率其中,n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,需要弄清公式中n、p、k的意义,才能正确运用公式(满分:75分)一、选择题(每小题5分,共25分)1(2010湖北)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B.C. D.2(2011温州月考)位于坐标原点的一个质点P按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动五次后位于点(2,3)的概率是
8、()A.5 BC5CC3 DCC53设每门高射炮击中飞机的概率为0.6,今有一架飞机来犯,问需要几门高射炮射击,才能至少以99%的概率击中它()A3 B4 C5 D64(2011合肥模拟)一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是()A. B.C. D.5同时抛掷三颗骰子:设A“三个点数都不相同”,B“至少有一个6点”,则P(B|A)为()A. B.C. D.二、填空题(每小题4分,共12分)6(2010湖北)一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为_(用数字作答)7(2010重庆)加
9、工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、,且各道工序互不影响,则加工出来的零件的次品率为_8(2010福建)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于_三、解答题(共38分)9(12分)一名学生骑车从家到学校的途中有6个路口,假设他在每个路口遇到红灯的事件是相互独立的,且概率都为.求:(1)这名学生在途中遇到红灯次数的分布列;(2)这名学生首次遇到红灯或到达目的地而停车时所经过了的路口数的分布
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 二项分布 及其 应用 新人 选修
限制150内