高中数学说课稿直线与平面垂直的判定.doc
《高中数学说课稿直线与平面垂直的判定.doc》由会员分享,可在线阅读,更多相关《高中数学说课稿直线与平面垂直的判定.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、说课稿2.3.1直线与平面垂直的判定第一课时府城中学 郑小芳一、教材分析1、 教材的地位和作用:直线与平面垂直的判定是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理和定理的初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!(如图)学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。2、 教学目标根据大纲要求,考虑到学生的接受能力和课容量,确定了本次课
2、的教学目标:A、知识与技能:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。B、过程与方法:通过线面垂直定义和定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。3、教学重点和难点根据课程标准,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。因而,我将本节课的教学重点确立为:重点:操作确认并概括出直线与平面垂直的定义和判定定理。由于学生的抽象概括能力、空间想象力还有待提高,而线面垂直判定定理的发现具有一定
3、的隐蔽性,学生不易想到,因此我把操作确认并概括出直线与平面垂直的判定定理和初步运用作为本节课的难点。二、课前准备(约需10分钟)(约需15分钟)(约需10分钟)(约需3分钟)线面垂直定义的建构线面垂直判定定理的探究创设情境感知概念观察归纳形成概念辨析讨论深化概念动手操作确认定理质疑反思深化定理分析实例猜想定理线面垂直判定定理的初步应用尝试练习巩固定理总结反思提高认识布置作业自主探究(约需2分钟)1.教师准备:长方体模型、多媒体课件2.学生自备:三角形纸片、笔(代表直线)、三角板、长方形贺卡三、教学设计本节的教学设计由以下几个环节构成教学环节教 学 过 程设 计 意 图1.直线与平面垂直定义的建
4、构(本环节是教学的第一个重点,是后面探究活动的基础,分三步进行:)(1)创设情境感知概念观察实例:引导学生将书打开直立于桌面,观察书脊与桌面的位置关系,由此引出课题。展示图片:观察图片,引导学生寻找出其中线面垂直的位置关系。(旗杆与地面、桥墩与地面)师生活动:引导学生举出身边更多类似的例子。(如教室内直立的墙角线和地面的位置关系,桌子的四只脚与地面的位置关系等)从实例到图片再到实际生活,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一步的数学抽象做准备(2)观察归纳形成概念(师生活动:学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调。)学生画图:引导学生将地面看
5、成平面,旗杆看做直线画出旗杆与地面位置关系的几何图形。思考:从直线与直线垂直、直线与平面平行的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?结合问题(1)和(2)观察动画演示:在阳光下直立于地面的旗杆AB和它在地面的影子BC的位置变化。问题(1):旗杆所在的直线AB与影子所在的直线BC的位置关系是什么?问题(2):旗杆AB与地面内任意一条不过旗杆底(师生活动:在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。再展示动画2引导学生根据异面直线所成角的概念得出旗杆AB所在直线与地面内任意一条不过点B的直线B1C1也垂直。)部B的直
6、线B1C1的位置关系又是什么?由此可以得到什么结论?引导学生归纳直线与平面垂直的定义、介绍相关概念,并引导学生用符号语言表示。直线l叫做平面的垂线,平面叫做直线l的垂面直线与平面垂直时,它们唯一的公共点P叫做垂足。定义:如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作:l. 用符号语言表示为:(师生活动:学生以小组为单位讨论交流,互相补充,并派代表作答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,同时给出直线与平面垂直的记法,并引导学生用符号语言表示。)从具体到抽象,引导学生完成抽象与具体之间的相互转换引导学生用“平面化”与“降维”的思想来思考问
7、题,直线和平面垂直的问题同样可以转化为考察直线和平面内直线的关系通过观察思考,感知直线与平面垂直的本质内涵。充分发挥学生的主观能动性,提高抽象概括能力,让学生体验成功的喜悦通过问题辨析与讨论,加深概念的理解,掌握概念的本质属性。由(1)使学生明确定义中的“任意”和“无数”的不同。由(2)使学生明确,线面垂直的定义既是线面垂直的判定又是性质,“直线与直线垂直”和“直线与平面垂直”可以相互转化。(3)辨析讨论深化概念辨析1:下列命题是否正确,为什么?(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直。(2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线。
8、(师生活动:命题(1)判断中引导学生利用手中的笔和三角板,笔表示直线,三角板两直角边表示两垂直直线,桌面表平面,将三角板的一条直角边AC放在桌面上,这时另一条直角边BC就和桌面内的一条直线(即三角板与桌面的交线AC)垂直,在此基础上在桌面内放一只和AC平行的笔EF并平行移动,那么BC始终和EF垂直,但BC不一定和桌面垂直,最后教师给出反例的直观图1。)图1由(2)给出下列常用命题:指出它是判断直线与直线垂直的常用方法,它将直线与直线垂直的问题转化为判定一条直线垂直于另一条直线所在的平面。2.直线与平面垂直的判定定理的探究(这个探究活动是本节课的关键所在,分三步进行:)(1)分析实例猜想定理问题
9、在长方体ABCDA1B1C1D1模型中,棱BB1与底面ABCD垂直,观察BB1与底面ABCD内直线AB、BC有怎样的位置关系?由此你认为保证BB1底面ABCD的条件是什么?问题如何将一张长方形贺卡直立于桌面?(师生活动:引导学生观察思考,师生共同分析长方体侧棱垂直底面、贺卡能直立于桌面的原因:侧棱或书脊固定在两相交直线上且与两直线垂直。)由上述两个实例,你能猜想出判断一条直线与一个平面垂直的方法吗?学生提出猜想:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 借助学生最熟悉的长方体模型和生活中最简单的经验,感知判定直线与平面垂直时只需平面内有限条直线(两条相交直线),从中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 说课稿 直线 平面 垂直 判定
限制150内