《生活垃圾卫生填埋场渗沥液处理工程设计方案.doc》由会员分享,可在线阅读,更多相关《生活垃圾卫生填埋场渗沥液处理工程设计方案.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、生活垃圾卫生填埋场渗沥液处理工程设计方案1.1 处理工艺处理流程图:渗沥液调节池格栅泵房UASB曝气生物滤池污泥浓缩池污泥脱水机房吹脱塔垃圾填埋场清水池排出污泥回流1.1.1 污水处理方案选择原则1)技术可靠,力求高效,处理工艺能满足排放标准要求;2)处理流程应具有一定的抗冲击负荷能力;3)运行稳定,操作管理简便;4)尽量降低基建投资与运行费用,少占土地、节约能耗;5)尽量考虑元近期结合,避免设备的浪费。1.1.2 渗沥液处理方案比较由于渗沥液水质水量变化的复杂性,其处理方案受多种因素的影响,目前的处理方案主要有:1)场内循环喷洒处理;2)在场内建设完全的独立处理工艺;3)场内与处理和场外与城
2、市污水厂合并处理相结合。它们的基本特点和使用条件见下表:表7-1 渗沥液处理方案的基本特点和使用条件渗沥液处理方案基本特点和使用条件预处理合并处理适用于处理厂居城市污水厂较近的情况,处理效果可得到保证,处理成本较低,但操作时要加以控制,以免对城市污水厂造成冲击负荷。场内独立处理系统处理效果稳定,处理出水达标,投资和运行费用巨大。场内循环喷洒处理系统可节省投资和运行费用,但渗沥液的喷洒会带来空气污染和不卫生及多层中间覆土使填埋体透水性降低等问题,这些因素限制了审理液循环喷洒的应用。据C县提供的资料,C县城市污水处理预计在2006年底建成,本项目距离城市污水处理厂7km,距离城市污水管网35km,
3、因此通过对渗沥液各种处理方的对比以及上述综合分析,本填埋场对渗沥液的处理拟采用预处理合并处理方案,渗沥液经处理达三级标准后,用吸污车运送至污水处理厂进一步处理。本污水处理系统排放标准为生活垃圾填埋污染控制标准(GB16889)中的三级标准,主要控制指标如下:COD1000毫克/升BOD600毫克/升SS400毫克/升。1.1.3 渗沥液处理设计水量及水质的确定根据渗沥液水量计算,确定渗沥液处理厂设计的规模为60m/d。由于我国的城市垃圾没有分类收集,对于新建的垃圾填埋场,垃圾中有机物含量很高,因此填埋渗沥液中BOD5和COD值很高、由于填埋场还未建成,参考国内外审理也处理方面的相关资料,以及C
4、县城市生活的物理构成成分,初步拟定渗沥液处理涉及的水质如下:BOD5=8000毫克/升COD=11000毫克/升SS=580毫克/升PH=6-91.1.4 污水处理工艺方案对比垃圾渗沥液的处理方法包括物理化学法和生物法,物理化学法主要有活性炭吸附、化学沉淀、化学氧化与还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,与生物处理相比,物理处理法不受水质水量变化的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07-0.20)难以生物处理的垃圾渗沥液,有较好的处理效果。其缺点主要是处理成本较高,不适用于大量垃圾渗沥液的处理及单独处理,可与生化法相结合来处理。生物法主要有好痒生物处理
5、、厌氧生物处理以及二者的结合。a)好氧生物处理可用于垃圾渗沥液处理的好氧生化工艺有多种,如活性污泥法、氧化沟法、好氧稳定塘、生物转盘法等。好氧处理能有效地降低BOD5、COD和氨氮,还可以去除其他一些污染物质如铁、锰等金属,其中活性污泥法因其费用低、效率高而得到最广泛的应用。许多学者研究发现活性污泥能去除渗沥液中99%的BOD5和80%以上的有机碳,及时进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起作用。在低负荷下运行的活性污泥系统,能去除渗沥液中80%-90%的COD,出水BOD520mg/L。试验研究结果表明,对于COD=4000-13000mg/L、BOD5=1600-11
6、000mg/L、NH4-N=87-590mg/L的渗沥液,混合式好氧活性污泥法对COD的去除效率可以稳定达到90%以上。众多实际运行的垃圾渗沥液处理系统也表明,活性污泥法比化学氧化法等其他方法的处理效果更佳。低氧、好氧活性污泥法以及SBR法等改进型活性污泥流程,因其具有能维持较高的运转负荷、好时短等特点,比常规活性污泥法更具有效果。同济大学有关研究人员用低氧好氧活性污泥法处理渗沥液,在控制运行条件下,效果卓越。最终总去除率分别为COD的96.4%和BOD5的99.6%、SS的83.4%。处理后的出水肉进一步用碱式氯化铝进行化学混凝沉淀处理,可以使出水的COD下降到100mg/L以下。与活性污泥
7、相比,曝气稳定塘体积大,有机负荷低,尽管降解速度较慢,但由于其工程简单,在有丰富土地资源的地区,是最节省投资的垃圾渗沥液好氧生物处理方法。美国、加拿大、英国等国家所进行的小试、中试及具备一定能够生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗沥液处理效果,但在运行过程中需要投加磷。生物膜法与活性污泥法相比,具有抗水量、水质冲击负荷的有点,而且生物膜上能生长时间较长的微生物,如硝化菌之类。加拿大某大学用直径0.9m的生物转盘处理COD1000mg/L、NH4-N50mg/L浓度较低的弱性渗沥液,其出水BOD525mg/L,当温度回升,微生物的消化能力随即恢复、但是应当指出,这种渗沥液的性质
8、与城市污水相近,对于高浓度的渗沥液处理,此方法是否使用还有待研究。b)厌氧生物处理厌氧生物处理的运用已经有近百年的历史。近20年来,随着微生物学、生物化学等科学发展和工程实践的积累,不断开发出新的厌氧工艺,克服了传统工艺的水力停留时间长、有机负荷低等特点,使它在理论和时间上有了很大的进步,在处理高浓度(BOD52000mg/L)有机废水方面取得了良好效果。艳阳生物有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,由于产生的剩余污泥量少,所需的营养物质也少。近年来,开发的砂氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧流化床反应器等。厌氧滤池是用于处理溶解性有机物,加拿大H
9、aifax Highway 101填埋场渗沥液平均COD为12850mg/L、BOD5/COD为0.7、PH=5.6。将此渗沥液先经过石灰水调节至PH=1.8,沉淀1小时后进厌氧滤池(此工序还起到除锌等重金属的作用),当负荷为4kgCOD(md),但对于渗沥液,其负荷必须保持较低水平才能得到理想的处理效果。英国的水研究报道用上流式厌氧污泥床(UASB)处理COD1000mg/L的渗沥液,当符合为3.6-19.7kgCOD/(md),平均污泥龄1.0-4.3d,温度为30时,COD和BOD5的去除率各为82%和85%,他们的负荷比厌氧滤池要大得多。c)厌氧与好氧的结合方式虽然实践已经证明厌氧生物
10、法对高浓度有机废水处理的有效性,但单独采用厌氧发处理渗沥液也很少见。对高浓度的垃圾渗沥液采用厌氧好氧相互结合的处理工艺经济合理,处理效率又高。目前国内外大多采用该方法处理垃圾渗沥液。下表列出了不同填埋年限渗沥液特征值的变化及各种处理工艺的适应性。各处理工艺效果比较表渗沥液特征值各种工艺的处理效果填埋年限COD/ TOCBOD/CODCOD(mg/L)生物化学好氧化学沉淀活性炭吸附反渗透5年2.80.510000好差差差一般5-10年2.0-2.80.1-0.5500-10000一般一般一般一般好10年2.00.1500差一般差好好1.1.5 污水处理工艺方案比较及选择通过对渗沥液处理各种方法和
11、技术的分析,经过综合考虑,夲填埋场污水处理工艺考虑两个方案,对其进行比较,以便进一步优化推荐方案。1)方案一:厌氧+好氧生物处理工艺渗沥液处理站离填埋库区比较近,好氧及厌氧处理后的剩余污泥用污泥泵抽送至填埋库区的适当地段填埋,剩余污泥中的水及丰富的微生物深入垃圾堆体后,可以加速垃圾熟化过程,同时可以减少污泥的处理费用。其工艺流程见下图:2)方案二:厌氧生物处理+物化法其中厌氧段采用上流式厌氧反应器,物化段采用AMT技术(分子分解污水处理工艺)。AMT技术原理:此技术从物质微观分子结构出发,通过系列物理化学作用,破坏污染物分子间的化学键,生成大量具有高度反应活性的自由基,并被氧化性极强的羟基氧化
12、为无机物;而参与的污染物通过再次氧化、吸附、离子交换等作用使污染物分子完全矿化,称为CO2、H2O、N2等,从而彻底降解污染物的物理化学方法。在污染物分子进行分解的过程中,AMT水处理技术集约了以下物理化学作用:电子碰撞和紫外线照射、超声波和光化学催化氧化。其工艺流程如下:从技术可行性方面分析,由于渗沥液水质复杂且不稳定,污染物浓度高,目前国内外普遍采用方案一作为处理工艺。方案二所确定的渗沥液处理工艺对于填埋初期,即渗沥液水质可生化性较强的时期,也许可以达到较好的处理效果,但对于填埋中、后期,随着垃圾堆体中有机物不断降解,碳、氮比不断变化,渗沥液水质将不断老龄化,可生化性将不断降低,该处理工艺
13、是否能适应水质的变化,处理后水质(特别是COD)是否能达到排放标准,尚需要接受实践的检验。从经济方面分析,方案一采用厌氧处理工艺去除大部分COD和BOD,因此维护管理方便,工程投资少,特别是运行费用较低,污泥量少而稳定、两方案详细比较见下表:渗沥液处理工艺方案比较表 方案项目 方案一方案二进水水质适应性适应性强适应性逐渐变差出水水质达标稳定达标达标不稳定构筑物数量构筑物水量少构筑物数量较多设备数量设备台数少设备台数多剩余污泥污泥稳定,污泥量少污泥不稳定,污泥量多运行管理维护管理简单工艺流程复杂,管理环节多运行费用运行费用少,节电运行费用高,电耗高工程投资投资少投资高通过以上比较可以看出,方案一
14、优于方案二,因此本工程采用方案一:厌氧+好氧生物处理工艺作为污水处理方案,由于污水处理系统产生的污泥无法直接进行填埋和压实,污泥需进过脱水后再进行填埋。1.2 主要处理设备1.2.1处理设备1、渗沥液调节池有效容积:8000m外形尺寸“28005m数量:1座设备:潜水排污泵2太,为污水处理系统的提升泵,一用一备。提升泵:Q=10m/h,H=12m,N=1.1kw2、上流式污泥床反应器(UASB)UASB上流式艳阳生物反应器(Upflow Anaerobic Sludge Blonket),它的工艺特征是在反应器的适当位置(上部)设计有适合于该废水的气、固、液的三相分离器;反应器中部为污泥悬浮层
15、区,期间设置有软性填料,其表面极易存留生物膜形态生长的微生物群体,在其空隙中则截留了大量悬浮状态下生长的微生物。因此,渗沥液通过填料层,有机物被截留,吸附剂代谢分解;下部为污泥床区。反应器的水力停留时间比较短,且具有很高的容积负荷,UASB运转时采用电加热进行加热以及相应保温措施以保证所需稳定在30-50,COD去除率达70-90%,BOD去除率大于85%。目前,国内已经有UASB成套产品供应,安装方便,维护简单。其进水COD可达2000-20000mg/L,COD去除率可达80%-90%。本工程设计参数如下:进水BOD5=8000mg/L,出水BOD5=2800mg/L,去除率为65%;进水
16、COD=11000mg/L,出水COD=3850mg/L,去除率为65%;容积负荷:1.65kgCOD/md;孝文化污泥产率“0.1kg/kgCOD,污泥量为43kg/d;数量:1座;设备:选用UASB1座,直径为4.5m,高度1.5m。3、CASS反应池设计流量:2.7m/h混合液浓度:3500mg/L污泥负荷:0.14kg BOD5/kgMLSSd污泥龄:20d污泥产率系数:0.25kgMLSS/kg BOD5进水BOD5=2800mg/L,出水BOD5600mg/L,去除率78.6%;进水COD=3850mg/L,出水COD1000mg/L,去除率74%;有效容积:去反应池的有效水深3m
17、,有效容积为150m,前端缺氧与反应区25m,后端好氧主反应区125m。平面尺寸:87m设备:潜水搅拌器1台,N=2.2kw 水下曝气机2台,充氧能力8.5kgO2/h,N=8.5kw 回流泵1台,Q=10m/h,H=10m,N=1.1kw工作周期:CASS池工作周期为24h,其中进水5h,曝气22h(含进水5h),沉淀1h,排水1h。4、中间水池有效容积:50m平面尺寸:652m设备:潜水排污泵2台,Q=10m/h,H=45m,N=11kw(一用一备)5、污泥贮存池本工程的剩余污泥产量为48kg/d,安很殿后含水率为99.2%考虑,每天需排除剩余污泥6m。污水处理过程所产生的剩余污泥在污泥贮存池内好氧稳定后,经脱水设施处理后送至填埋场填埋,上清液用泵提升回流至渗沥液调节池。有效容积:20m平面尺寸:541.5m设备:水下曝气机1台,充氧能力2kgO2/h,N=2.2kw 污泥提升泵2台,Q=10m/h,H=30m,N=3kw(一用一备)1.2.2 处理效果预测各处理单元处理效果预测见下表:各单元处理效果预测项目反应阶段工艺单元BOD5(mg/L)COD(mg/L)SS(mg/L)进水出水去除率进水出水去除率进水出水去除率UASB8000280065%11000385065%5805800%CASS280060078.6%3850100074%58040031%
限制150内