含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)(9页).doc
《含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)(9页).doc》由会员分享,可在线阅读,更多相关《含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)-第 9 页含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种: 一、按项的系数的符号分类,即;例1 解不等式: 分析:本题二次项系数含有参数,故只需对二次项系数进行分类讨论。 解:解得方程 两根当时,解集为当时,不等式为,解集为当时, 解集为 例2 解不等式分析 因为,所以我们只要讨论二次项系数的正负。解 当时,解集为;当时,解集为二、按判别式的符号分类,即;例3 解不等式分析 本题中由于的系数大于0,故只需考虑与根的情况。解: 当即时,解集为;
2、当即0时,解集为;当或即,此时两根分别为,显然, 不等式的解集为 例4 解不等式 解 因所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。三、按方程的根的大小来分类,即;例5 解不等式分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:当或时, ,故原不等式的解集为;当或时,,可得其解集为;当或时, ,解集为。例6 解不等式, 分析 此不等式,又不等式可分解为,故只需比较两根与的大小.解 原不等式可化为:,对应方程的两根为 ,当时,即,解集为;当时,即,解集为含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数
3、、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1:若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m
4、-1=0时,元不等式化为20恒成立,满足题意;(2)时,只需,所以,。例2已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例3、若时,不等式恒成立,求的取值范围。解:设,则问题转化为当时,的最小值非负。(1) 当即:时, 又所以不存在;(2) 当即:时, 又 (3) 当 即:时, 又综上所得:例4函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数 一元 二次 不等式 解法 以及 成立 问题 专题
限制150内