新课标高考数学试题研究大题概率统计理科.doc
《新课标高考数学试题研究大题概率统计理科.doc》由会员分享,可在线阅读,更多相关《新课标高考数学试题研究大题概率统计理科.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计及概率A. 直方图(2014)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:()求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);()由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.附:12.2.若,则=0.6826,=0.9544.B.茎叶图(2015)某公司为了解用户对其产品的满意度
2、,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);()根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意
3、记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.C.回归分析(2015)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.46.65636.8289.81.61469108.8表中,.()根据散点图判断,及哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y
4、关于x的回归方程;()已知这种产品的年利率z及x、y的关系为.根据()的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?()年宣传费x为何值时,年利润的预报值最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:解:()由散点图可以判断,适宜作为年销售量关于年宣传费的回归方程类型2分()令,先建立关于的线性回归方程,由于所以关于的线性回归方程为,因此关于的线性回归方程6分()()由()知,当时,年销售量的预报值年利润的预报值9分()根据()的结果知,年利润的预报值所以,当,即时,取得最大值,故年宣传费为46.24千元时,年利润的预报值最大12分D.随机
5、变量(2011湖南理)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。()求当天商品不进货的概率;()记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.解:(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1件”)()由题意知,的可能取值为2,3. (“当天商品销售量为1件”) (“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”)
6、 故的分布列为23 的数学期望为(2011全国理)根据以往统计资料,某地车主购买甲种保险的概率为05,购买乙种保险但不购买甲种保险的概率为03,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;()X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数,求X的期望.解:记A表示事件:该地的1位车主购买甲种保险; B表示事件:该地的1位车主购买乙种保险但不购买甲种保险; C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种; D表示事件:该地的1位车主甲、乙两种保险都不购买; (I)3分 6分 (II),即X服从二项分布,10分所以期望12分(2013)一
7、批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望解:(1)设第一次取出的4件产品中恰有3件优质品为事
8、件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1及A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2).(2)X可能的取值为400,500,800,并且P(X400),P(X500),P(X800).所以X的分布列为X400500800PEX506.25.E.独立性检验(2010) 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标高 数学试题 研究 概率 统计 理科
限制150内