高三数学立体几何历年高考题.doc





《高三数学立体几何历年高考题.doc》由会员分享,可在线阅读,更多相关《高三数学立体几何历年高考题.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学立体几何高考题1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6 (B)9 (C)12(D)18 2.(2012年8)平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为 (A) (B)4 (C)4 (D)63.(2013年11)某几何体的三视图如图所示,则该几何体的体积为()A168 B88C1616 D8164.(2013年15)已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几
2、何体的三视图,则这个几何体是( )A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 6.(2014年10)正四棱锥的顶点都在同一球面上若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B16 C9 D.7.(2015年6)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A)斛 (B)斛 (C)斛 (D)斛8.(20
3、15年11)圆柱被一个平面截去一部分后及半球(半径为)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则( )(A) (B) (C) (D)9(2016年7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是(A)17 (B)18 (C)20 (D)28 10(2016年11)平面过正方体ABCDA1B1C1D1的顶点A,,,则m,n所成角的正弦值为(A) (B) (C) (D)11(2017年6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB及平
4、面MNQ不平行的是12(2017年16)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径。若平面SCA平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为_。13(2011年).如图,四棱锥中,底面ABCD为平行四边形,底面ABCD(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高14.(2012课标全国)如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB=90,AC=BC=AA1,D是棱AA1的中点()证明:平面BDC1平面BDC()平面BDC1分此棱柱为两部分,求这两部分体积的比。15. (2013课标全国)如图,三棱柱ABCA1B
5、1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若ABCB2,A1C,求三棱柱ABCA1B1C1的体积16 (2014课标全国)如图11所示,三棱柱ABC A1B1C1中,点A1在平面ABC内的射影D在AC上,ACB90,BC1,ACCC12.(1)证明:AC1A1B;(2)设直线AA1及平面BCC1B1的距离为,求二面角A1-AB-C的大小17.(2015年新课标1)如图四边形ABCD为菱形,G为AC及BD交点,(1)证明:平面平面;(2)若, 三棱锥的体积为,求该三棱锥的侧面积.18 (2016年新课标1)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 立体几何 历年 考题

限制150内