土木工程外文翻译-原文(9页).doc
《土木工程外文翻译-原文(9页).doc》由会员分享,可在线阅读,更多相关《土木工程外文翻译-原文(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-土木工程外文翻译-原文-第 9 页外文原文Response of a reinforced concrete infilled-frame structure to removal of two adjacent columnsMehrdad Sasani_Northeastern University, 400 Snell Engineering Center, Boston, MA 02115, United StatesReceived 27 June 2007; received in revised form 26 December 2007; accepted 24 Januar
2、y 2008Available online 19 March 2008AbstractThe response of Hotel San Diego, a six-story reinforced concrete infilled-frame structure, is evaluated following the simultaneous removal of two adjacent exterior columns. Analytical models of the structure using the Finite Element Method as well as the A
3、pplied Element Method are used to calculate global and local deformations. The analytical results show good agreement with experimental data. The structure resisted progressive collapse with a measured maximum vertical displacement of only one quarter of an inch (6.4 mm). Deformation propagation ove
4、r the height of the structure and the dynamic load redistribution following the column removal are experimentally and analytically evaluated and described. The difference between axial and flexural wave propagations is discussed. Three-dimensional Vierendeel (frame) action of the transverse and long
5、itudinal frames with the participation of infill walls is identified as the major mechanism for redistribution of loads in the structure. The effects of two potential brittle modes of failure (fracture of beam sections without tensile reinforcement and reinforcing bar pull out) are described. The re
6、sponse of the structure due to additional gravity loads and in the absence of infill walls is analytically evaluated. c 2008 Elsevier Ltd. All rights reserved.Keywords: Progressive collapse; Load redistribution; Load resistance; Dynamic response; Nonlinear analysis; Brittle failure1. IntroductionThe
7、principalscopeofspecificationsistoprovidegeneralprinciplesandcomputationalmethodsinordertoverifysafetyofstructures.The“safetyfactor”,whichaccordingtomoderntrendsisindependentofthenatureandcombinationofthematerialsused,canusuallybedefinedastheratiobetweentheconditions.Thisratioisalsoproportionaltothe
8、inverseoftheprobability(risk)offailureofthestructure.Failurehastobeconsiderednotonlyasoverallcollapseofthestructurebutalsoasunserviceabilityor,accordingtoamoreprecise.Commondefinition.Asthereachingofa“limitstate”whichcausestheconstructionnottoaccomplishthetaskitwasdesignedfor.Therearetwocategoriesof
9、limitstate:(1)Ultimatelimitsate,whichcorrespondstothehighestvalueoftheload-bearingcapacity.Examplesincludelocalbucklingorglobalinstabilityofthestructure;failureofsomesectionsandsubsequenttransformationofthestructureintoamechanism;failurebyfatigue;elasticorplasticdeformationorcreepthatcauseasubstanti
10、alchangeofthegeometryofthestructure;andsensitivityofthestructuretoalternatingloads,tofireandtoexplosions.(2)Servicelimitstates,whicharefunctionsoftheuseanddurabilityofthestructure.Examplesincludeexcessivedeformationsanddisplacementswithoutinstability;earlyorexcessivecracks;largevibrations;andcorrosi
11、on.Computationalmethodsusedtoverifystructureswithrespecttothedifferentsafetyconditionscanbeseparatedinto:(1)Deterministicmethods,inwhichthemainparametersareconsideredasnonrandomparameters.(2)Probabilisticmethods,inwhichthemainparametersareconsideredasrandomparameters.Alternatively,withrespecttothedi
12、fferentuseoffactorsofsafety,computationalmethodscanbeseparatedinto:(1)Allowablestressmethod,inwhichthestressescomputedundermaximumloadsarecomparedwiththestrengthofthematerialreducedbygivensafetyfactors.(2)Limitstatesmethod,inwhichthestructuremaybeproportionedonthebasisofitsmaximumstrength.Thisstreng
13、th,asdeterminedbyrationalanalysis,shallnotbelessthanthatrequiredtosupportafactoredloadequaltothesumofthefactoredliveloadanddeadload(ultimatestate).Thestressescorrespondingtoworking(service)conditionswithunfactoredliveanddeadloadsarecomparedwithprescribedvalues(servicelimitstate).Fromthefourpossiblec
14、ombinationsofthefirsttwoandsecondtwomethods,wecanobtainsomeusefulcomputationalmethods.Generally,twocombinationsprevail:(1)deterministicmethods,whichmakeuseofallowablestresses.(2)Probabilisticmethods,whichmakeuseoflimitstates.Themainadvantageofprobabilisticapproachesisthat,atleastintheory,itispossibl
15、etoscientificallytakeintoaccountallrandomfactorsofsafety,whicharethencombinedtodefinethesafetyfactor.probabilisticapproachesdependupon:(1)Randomdistributionofstrengthofmaterialswithrespecttotheconditionsoffabricationanderection(scatterofthevaluesofmechanicalpropertiesthroughoutthestructure);(2)Uncer
16、taintyofthegeometryofthecross-sectionsandofthestructure(faultsandimperfectionsduetofabricationanderectionofthestructure);(3)Uncertaintyofthepredictedliveloadsanddeadloadsactingonthestructure;(4)Uncertaintyrelatedtotheapproximationofthecomputationalmethodused(deviationoftheactualstressesfromcomputeds
17、tresses).Furthermore,probabilistictheoriesmeanthattheallowableriskcanbebasedonseveralfactors,suchas:(1)Importanceoftheconstructionandgravityofthedamagebyitsfailure;(2)Numberofhumanliveswhichcanbethreatenedbythisfailure;(3)Possibilityand/orlikelihoodofrepairingthestructure;(4)Predictedlifeofthestruct
18、ure.Allthesefactorsarerelatedtoeconomicandsocialconsiderationssuchas:(1)Initialcostoftheconstruction;(2)Amortizationfundsforthedurationoftheconstruction;(3)Costofphysicalandmaterialdamageduetothefailureoftheconstruction;(4)Adverseimpactonsociety;(5)Moralandpsychologicalviews. Thedefinitionofallthese
19、parameters,foragivensafetyfactor,allowsconstructionattheoptimumcost.However,thedifficultyofcarryingoutacompleteprobabilisticanalysishastobetakenintoaccount.Forsuchananalysisthelawsofthedistributionoftheliveloadanditsinducedstresses,ofthescatterofmechanicalpropertiesofmaterials,andofthegeometryofthec
20、ross-sectionsandthestructurehavetobeknown.Furthermore,itisdifficulttointerprettheinteractionbetweenthelawofdistributionofstrengthandthatofstressesbecausebothdependuponthenatureofthematerial,onthecross-sectionsandupontheloadactingonthestructure.Thesepracticaldifficultiescanbeovercomeintwoways.Thefirs
21、tistoapplydifferentsafetyfactorstothematerialandtotheloads,withoutnecessarilyadoptingtheprobabilisticcriterion.Thesecondisanapproximateprobabilisticmethodwhichintroducessomesimplifyingassumptions(semi-probabilisticmethods).As part of mitigation programs to reduce the likelihood of mass casualties fo
22、llowing local damage in structures, the General Services Administration 1 and the Department of Defense 2 developed regulations to evaluate progressive collapse resistance of structures. ASCE/SEI 7 3 defines progressive collapse as the spread of an initial local failure from element to element event
23、ually resulting in collapse of an entire structure or a disproportionately large part of it. Following the approaches proposed by Ellinwood and Leyendecker 4, ASCE/SEI 7 3 defines two general methods for structural design of buildings to mitigate damage due to progressive collapse: indirect and dire
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土木工程 外文 翻译 原文
限制150内